Day 3: Independent and Dependent Events

Warm-up:

- rm-up: 2,598,960

 1. If you have a standard deck of cards in how many different hands exist of: 5 cards? 2 cards? (Show work by hand) 52° 52° 5

- 5. Arrange the letters of the word FACTOR = $6P_6 = \boxed{720}$
- 6. Choose two jelly beans from a bag of 15? $_{15}C_{2}=105$ 7. Assign the part of a play to the 4 lead characters from a group of 30 who tried out. $_{25}P_{11}$

30P4

Day 3: Independent and Dependent Events

Remember, the probability that an event E will occur is abbreviated _ Review:

Ex 1/ If you are dealt one card from a standard 52-card deck, find the probability of getting a king.

P(Fing) = 4 = [13

Ex 2/ Find the probability of rolling a number greater than 2 when you roll a die once.

There are 7 marbles in a bag. You draw 2 marbles from the bag using the following scenarios:

Experiment 1: Draw one marble. Put it back. Draw a marble again.

Draw 2 15 NOT affected by draw 1.

When the outcome of a second event is not affected by the outcome of the first event, then the two events are called independent events.

If A and B are independent events, then

$$P(A \text{ and } B) = P(A) \circ P(B)$$

Example 1: Suppose 5 marbles in the bag are yellow and 2 marbles are green. You draw 1

marble and put it back before drawing a second. Find the probability that the marble color in both draws is yellow.

P(yellow and yellow) =
$$P(Y) \cdot P(Y) = \frac{5.5}{7.7} = \frac{25}{49}$$

Experiment 2: Draw one marble. Then draw another without replacing the first.

When the outcome of a second event is affected by the outcome of the first event, then the two events are called de pendent events.

If A and B are dependent events, then

this meanine assume the 1st draw was a success

Example 2: Suppose 5 marbles in the bag are yellow and 2 marbles are green. You draw 1 marble and then another without putting back the first marble. Find the probability that both marbles are yellow.

P(yellow, then yellow) = P(Y). P(YafterY) = 5 . 4 = 20 = 10

Classifying Events as Dependent or Independent

- 1) Pick a cookie from the party platter. Then pick another cookie from the same Dependent and pick is a flected by the first platter.
- 2) A number from 1 to 31 is selected at random. Then a month is selected at random. Independent]
- 3) A grade level from K-12 is selected at random. Then one of the remaining grade levels is selected at random.
- 4) Select a bag of chips at random from the pile. Change your mind and return it. Then pick another bag of chips at random. Independent and pick is Not affected

Calculating Probabilities of Independent and Dependent Events

A game board in your closet has 7 purple game pieces, 4 red game pieces, and 3 green game pieces. You randomly choose one game piece and then replace it. Then you choose a second game up independent events piece. Find each probability.

1) P(red and green)

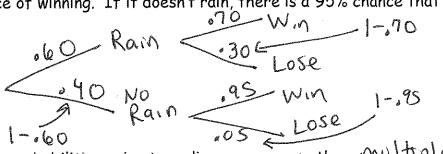
2) P(green and purple)

green and purple) 3) P(both red)
$$P(6) \circ P(P) \qquad P(R) \circ P(R)$$

$$\frac{3}{14} \cdot \frac{7}{14} = \frac{21}{196}$$

$$\frac{4}{14} \cdot \frac{4}{196} = \frac{16}{14}$$

$$\frac{3}{38}$$


You are folding the socks from the laundry basket, which contains 6 brown socks, 2 blue socks, and 5 black socks. You pick one sock at a time and don't replace it. Find each probability. 見ねし

5) P(brown, then blue)
P(Brown). P(BBrown) 4) P(blue, then black) P(Blue) . P(Black Blue)

Tree Diagrams	
A compound	event is an event that is the result of more than one
	pring
Ex 1: What is p	rob that you torgot to do HW & there is a popqui.
Ex 2! If you f	rob that you forgot to do HW + there is a popquz? ip a coin froll a dre what is prob of getting tails of an even
To determine probabilities	of compound events, we can use the diagrams. He

Ex 2: Create a Tree Diagram for the following scenario:

There is a 60% chance of rain on Wednesday. If it rains, the track team has a 70% chance of winning. If it doesn't rain, there is a 95% chance that the track team will win. $\sqrt[6]{0} \quad \text{W}_{1} \quad \text{A} \quad$

To calculate probabilities using tree diagrams, we use the <u>multiplication</u>

up the compound event must be <u>in dependent</u> events, which means that the probabilities of the outcomes do not affect one another.

To calculate probability of compound events:

Ex 3: Fill in the remaining outcomes for Example 2 above. Then, calculate the probabilities for each outcome.

Outcome	Calculations	Probability	
Rain and Track Team Wins	(.60)(.70) = .42	42%	Zsum
Rain and track Team Loses	(.60)(.30)=018	18%	60%
No Rain and Trade Team Wins	(.40)(.95)=.3	8 38%	Jeun
No Rain and Track Team Loses	(40)(0S)=.0	2 2%	Juoh

Ex 4: What is the probability that the track team wins?
$$P(team win) = P(rainwin) + P(rainwin) + P(rainwin) = 42\% + 38\% = 80\%$$

Ex 5: A student in Buffalo, New York, made the following observations: • Of all snowfalls, 5% are heavy (at least 6 inches). YOU After a heavy snowfall, schools are closed 67% of the time. After a light (less than 6 inches) snowfall, schools are closed 3% of the time. a) Create a tree diagram for the scenario, listing all possibilities and probabilities. e diagram for the scenario, listing all possibilities and probabilities and probabil .033<u>5</u> b) Find the probability that snowfall is light and schools are open (.95)(.97) = .9215c) Find the probability that there is snowfall and schools are open. g heavy + open) + P(light + open) = (.05) (.33) + (.95) (.97) d) Find P(schools open, given heavy snow). 3%) 'Zoom in' to heavy snow branch t find probability of school open off that