HW Answers: Cumulative Review

1) $1 / 3,-1 / 2$
2) 3.8039
3) $\mathrm{m} \angle \mathrm{SRQ}=140^{\circ}$
4) 74 units
5) a) $t=\frac{2400}{x} \quad$ b) $\$ 12 \quad$ c) 96 students
x
6) a) $y=1.10 x^{2}-30.49 x+890.03$
b) 790.61 points
7) a) $3 k y \sqrt[4]{3 y^{3}}$
8) $\frac{-3 \pm \sqrt{3}}{2}$
c) 1984,2003
b) $3^{\frac{5}{4}} k y^{\frac{7}{4}}$
9) a) 270° rotation b) $(x, y)->(y,-x)$

HW Answers: Cumulative Review

11) a) reflection over x-axis
b) $(x, y)->(x,-y) \quad$ c) $(x, y)->(x+3, y+4)$
12) a) next $=$ now $\cdot 0.88$; start $=28,500$
b) $y=28500(0.88)^{x}$
c) $\$ 15040.36$
13) $y=8(1.5)^{x}$
14) $Y=0.06(x)^{2.0131}$;
69.37 minutes
15) a) Area $=x(120-2 x)$
b) Area $=120 x-2 x^{2}$
c) $1800 \mathrm{ft}^{2}$

Unit 6 Probability
 Day 1 Counting Techniques

Warm Up

1. The graph of the visible percent of the moon during a moon cycle roughly models a trig graph, as shown.

The Moon Cycle
Find its
Amp:
Period:
Midline: \qquad

Equation:

2. Solve $2 \sin (x) \cos (x)=\sqrt{3} \cos x$ given $0 \leq \mathrm{x} \leq 180$.
3. Find the area of a triangle given sides $8 \mathrm{~cm}, 10 \mathrm{~cm}$, and included angle 150 degrees.
4. Find the last side in \#3.

Warm Up Answers

1. The graph of the visible percent of the moon during a moon cycle roughly models a trig graph, as shown.

The Moon Cycle
Find its
Amp: 50
Period: 30
Midline: $\bar{y}=-$

Equation: $y=-50 \cos (12 x)+50$

Warm Up

2. Solve $2 \sin (x) \cos (x)=\sqrt{3} \cos x$ given $0 \leq \mathrm{x} \leq 180$.
$2 \sin (x) \cos (x)-\sqrt{3} \cos x=0$
$\cos (x)(2 \sin (x)-\sqrt{3})=0$
$\cos (x)=0 \quad 2 \sin (x)-\sqrt{3}=0$
$x=\cos ^{-1}(0) \quad x=\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
$x=90^{\circ}, 60^{\circ}$

Warm Up

3. Find the area of a triangle given sides $8 \mathrm{~cm}, 10 \mathrm{~cm}$, and included angle 150 degrees.

$$
\text { Area }=1 / 2(8)(10) \sin (150)=20 \mathrm{~cm}^{2}
$$

4. Find the last side of \#3.

17.4 cm

Warm Up

1. Given the equation $\quad y=4+\sqrt{x+2}$ draw the graph, being sure to indicate at least 3 points clearly. Then determine the following:
a. Identify its vertex \qquad
b. Identify its domain
c. Identify its range
d. How is this function translated from its parent graph?
e. If this graph was translated to the right 5 units, what would the new equation be?

Solve
2. $2 \sqrt[3]{(x-1)^{4}}+4=36$
3. $\sqrt{x+7}-x=1$

Warm Up Answers

1. Given the equation $\quad y=4+\sqrt{x+2}$ draw the graph, being sure to indicate at least 3 points clearly. Then determine the following:
a. Identify its vertex _(-2, 4)
b. Identify its domain $[-2, \infty)$
c. Identify its range __-_[4, ∞)
d. How is this function translated from its parent graph? left 2 _up 4
e. If this graph was translated to the right 5 units, what would the new equation be?

Solve

$$
y=4+\sqrt{x-3}
$$

$$
\begin{array}{rc}
2 \sqrt[3]{(x-1)^{4}}+4=36 & \text { 3. } \sqrt{x+7}-x=1 \\
x=9,-7 & \mathrm{x}=2
\end{array}
$$

Homework Discussion

Unit 5 Packet p. 27-30

Homework Tonight

-Packet p. 1-2
Cumulative Review \#16-21
Reminder:

- Unit 5 Trig Test Tomorrow!
-Tutorials are Monday and Thursday - second half of lunch.

Unit 6 Probability

Day 1

Fundamental Counting Principle Other Counting Techniques

Probability

Notes p. 1

I. Introduction

Probability Defined:
What do you know about probability?

Probability

Notes p. 1

ı. Introduction

Probability Defined:

- General: Probability is the likelihood of something happening
- Mathematical expression:

Probability $=\frac{\text { Number of desired outcomes }}{\text { Number of total outcomes }}$

Today, we'll focus on counting techniques to help determine this total \#!
II. Basic Counting Methods for Determining the Number of Possible Outcomes
a. Tree Diagrams:

Example \#1: LG will manufacture 5 different cellular phones: Ally, Extravert, Intuition, Cosmos and Optimus. Each phone comes in two different colors: Black or Red. Make a tree diagram representing the different products.
How many different products can the company display?

b. In general:

- If there are \underline{m} ways to make a first selection and \underline{n} ways to make a second selection, then there are m times n ways to make the two selections simultaneously. This is called the Fundamental Counting Principle.
- Ex \#1 above: 5 different cell phones in 2 different colors. How many different products?

$$
5 \cdot 2=10
$$

Practice

Ex \#2: Elizabeth is going to completely refurbish her car. She can choose from 4 exterior colors: white, red, blue and black. She can choose from two interior colors: black and tan. She can choose from two sets of rims: chrome and alloy. How many different ways can Elizabeth remake her car? Make a tree diagram and use the Counting Principle.

$$
4 \cdot 2 \cdot 2=16
$$

Ex \#3: Passwords for employees at a company in Raleigh NC are 8 digits long and must be numerical (numbers only). How many passwords are possible? (Passwords cannot begin with 0)

$$
9 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10=90,000,000
$$

B. Permutations-Another way to "count" possibilities

a. Two characteristics:

1. Order IS important
2. No item is used more than once

Example \#1

There are six "permutations", or arrangements, of the numbers 1,2 and 3 .

What are they?

$$
\begin{array}{ll}
123 & 132 \\
213 & 231 \\
312 & 321
\end{array}
$$

Example \#2

How many ways can 10 cars park in 6 spaces? The other four will have to wait for a parking spot. :)
(Use the Fundamental Counting Principle)

$$
10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5=151200
$$

b. Formula:

If we have a large number of items to choose from, the fundamental counting principle would be inefficient. Therefore, a formula would be useful.

First we need to look at "factorials". Notation: n! stands for n factorial

Definition of \mathbf{n} factorial:
For any integer $n>0$,

$$
n!=n(n-1)(n-2)(n-3) \ldots(3)(2)(1)
$$

Supplemental Example:

$$
4!=4 \cdot 3 \cdot 2 \cdot 1
$$

$$
\text { If } n=0,0!=1
$$

Example \#2 (revisited):

We could rewrite the computation in our example as follows: $\quad 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 4$
$10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5=\frac{4 \cdot 3 \cdot 2 \cdot 1}{\frac{4 \cdot 10!}{4!}}$
Furthermore, notice that $=\frac{10!}{4!}=\frac{10!}{(10-6)!}$
So, the number of permutations (or arrangements)
of 10 cars taken 6 at a time is 151200

Generally, the Number of Permutations of n items taken r at a time,

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

How to do on the calculator:
n MATH
PRB
nPr
r
Note: You'll have to know how to calculate these by hand, BUT remember you can check your work with the calculator!

c. EXAMPLE \#3

In a scrabble game, Jane picked the letters A, D,F,V, E and I. How many permutations (or arrangements) of 4 letters are possible?

$$
\frac{6!}{(6-4)!}=360
$$

Let's do both ways - by hand with the formula and in the calculator!

Practice Problems

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

1. Evaluate: (By hand then using ${ }_{n} P_{r}$ function on the calculator to check your answer.)

a. ${ }_{10} \mathrm{P}_{3}$
720
b. ${ }_{9} \mathrm{P}_{5}$
15120

2. How many ways can runners in the 100 meter dash finish 1st (Gold Medal), 2nd (Silver) and 3rd (Bronze Medal) from 8 runners in the final? NOTE: This is a permutation because the people are finishing in a position. ORDER matters!

336

C. Combinations

a. Two characteristics: 1. Order DOES NOT matter 2. No item is used more than once

Supplemental Example: How many "combinations" of the numbers 1, 2 and 3 are possible?

There is just 1 combination of $1,2,3$ because order doesn't matter so 123 is considered the same as 321,213 , etc.

EXAMPLE:

While creating a playlist on your ipod you can choose 4 songs from an album of 6 songs. If you can choose a given song only once, how many different combinations are possible? (List all the possibilities)

We'll let A, B, C, D, E, and F represent the songs. ABCD ABCE ABCF ACDE ACDF ADEF ABDE ABDF ACEF ABEF
BCDE BCDF BDEF
CDEF

b. Formula:

Making a list to determine the number of combinations can be time consuming. Like permutations, there is a general formula for finding the number of possible combinations.

Number of Combinations of n items taken r items at a time is

$$
{ }_{n} C_{r}=\frac{n!}{(n-r)!\cdot r!}
$$

How to do on the calculator:
n
MATH
PRB
nCr

Let's look at the Playlist EXAMPLE again

While creating a playlist on your I pod you can choose 4 songs from an album of 6 songs. If you can choose a given song only once, how many different combinations are possible? (List all the possibilities)

Let's do both ways - by hand with the formula and in the calculator!

$$
\text { Practice Problems }{ }_{n} C_{r}=\frac{n!}{(n-r)!\cdot r!}
$$

1. Evaluate:

$$
\text { a. }{ }_{4} \mathrm{C}_{2} \quad \text { b. } \mathrm{C}_{3} \quad \text { c. }{ }_{8} \mathrm{C}_{8}
$$

2. A local restaurant is offering a 3 item lunch special. If you can choose 3 or fewer items from a total of 7 choices, how many possible combinations can you select?
3. A hockey team consists of ten offensive players, seven defensive players, and three goaltenders. In how many ways can the coach select a starting line up of three offensive players, two defensive players, and one goaltender?

Practice Problems ${ }_{n} C_{r}=\frac{n!}{(n-r)!\cdot r!}$

1. Evaluate:
a. ${ }_{4} C_{2}$
b. ${ }_{7} \mathrm{C}_{3}$
C. ${ }_{8} \mathrm{C}_{8}$
6
35
1

$$
\text { Practice Problems }{ }_{n} C_{r}=\frac{n!}{(n-r)!\cdot r!}
$$

2. A local restaurant is offering a 3 item lunch special. If you can choose 3 or fewer items from a total of 7 choices, how many possible combinations can you select?

$$
{ }_{7} C_{3}+{ }_{7} C_{2}+{ }_{7} C_{1}+{ }_{7} C_{0}=64
$$

3. A hockey team consists of ten offensive players, seven defensive players, and three goaltenders. In how many ways can the coach select a starting line up of three offensive players, two defensive players, and one goaltender?

$$
{ }_{10} C_{3} \cdot{ }_{7} C_{2} \cdot{ }_{3} C_{1}=7560
$$

$$
{ }_{n} C_{r}=\frac{n!}{(n-r)!\cdot r!} \quad{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

Mixed Practice: Indicate if the situation following is a Permutation or Combination. Then, solve.
a. In a bingo game 30 people are playing for charity. There are prizes for 1st through 4th. How many ways can we award the prizes?

Permutationor Combination ${ }_{30} P_{4}=657720$
b. From a 30-person club, in how many ways can a President, Treasurer and Secretary be chosen?

Permutationor Combination

$$
{ }_{30} P_{3}=24360
$$

$$
{ }_{n} C_{r}=\frac{n!}{(n-r)!\cdot r!} \quad{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

Mixed Practice: Indicate if the situation following is a Permutation or Combination. Then, solve.
c. In a bingo game 30 people are playing for charity. There are two $\$ 50$ prizes. In how many ways can prizes be awarded?

Permutation orcombination

$$
{ }_{30} C_{2}=435
$$

d. How many 3-digit passwords can be formed with the numbers $1,2,3,4,5$ and 6 if no repetition is allowed?

Permutation or Combination

$$
{ }_{6} P_{3}=120
$$

$$
{ }_{n} C_{r}=\frac{n!}{(n-r)!\cdot r!} \quad{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

Mixed Practice: Indicate if the situation following is a Permutation or Combination. Then, solve.
e. Converse is offering a limited edition of shoes. They are individually made for you and you choose 4 different colors from a total of 25 colors. How many shoes are possible?

Permutation orcombination ${ }_{25} C_{4}=12650$
f. A fast food chain is offering a $\$ 5$ box special. You can choose no more than 5 items from a list of 8 items on a special menu. In how many wavs could you fill the box?

Permutation orcombination

$$
{ }_{8} C_{5}+{ }_{8} C_{4}+{ }_{8} C_{3}+{ }_{8} C_{2}+{ }_{8} C_{1}+{ }_{8} C_{0}=219
$$

Closing

Ticket out the door

- Write down the two new formulas you learned.
- Write down what n! means.

Homework

Packet p. 1-2
 Cumulative Review \#16-21

-Reminder: Tutorials are Monday and Thursdayfirst half of lunch.

Practice

1. Find its

Amp: $\mathbf{2}^{2}$
Period: 4
Midline: $\underline{y}=-3$

Equation: $\underset{-}{y}=-2 \sin (90 x)-3$

