Unit 5 Trigonometry Day 8 \& 9

Graphs of

Sine and Cosine and Tangent
Amplitude, Midline, and Period of Sine and Cosine Graphs

Unit 5 Trigonometry Day 8

Introduction to Graphs of Sine and Cosine

Warm-Up

Solve for the variable:

1)

2)

Add to your notes:

6) The angle of depression from an airplane to the landing strip is 32°. If the plane is at an altitude of 1000 ft , how far does the plane have to travel to get to the landing strip?

Warm-Up ANSWERS

Solve for the variable:

2)

3) $13.8 \quad$ 4) 5.5
5) 10.3

Warm-Up ANSWERS

Add to your notes:

6) The angle of depression from an airplane to the landing strip is 32°. If the plane is at an altitude of 1000 ft , how far does the plane have to travel to get to the landing strip?

$$
\begin{array}{r}
\operatorname{Sin}\left(32^{\circ}\right)=\frac{1000}{x} \\
x \operatorname{Sin}\left(32^{\circ}\right)=1000 \\
x=\frac{1000}{\operatorname{Sin}\left(32^{\circ}\right)}
\end{array}
$$

1887.08 ft

Homework Answers - Packet p. 15

Day 6 Homework: Classifying Triangles and their parts

Answer each question with never, sometimes, or always.

1. Right triangles can be obtuse triangles. \qquad
2. Isosceles triangles are equilateral triangles.

3. Equilateral triangles are isosceles triangles. \qquad always \rightarrow no yes
4. Obtuse triangles have more than one obtuse angle.
 is os \triangle has $\geq 2 \cong$ sides
5. Equilateral triangles have the same angle measure. always
6. Isosceles triangles are acute triangles. \qquad some homes

7. I can use the term equilateral when referring to equiangular triangles.

8. Acute triangles are equiangular. \qquad some times
9. Isosceles triangles are right triangles. \qquad

10. The angles in scalene triangles are different.

11. A scalene triangle is an acute triangle.
12. An equilateral triangle is a scalene triangle. \qquad cant have + all diff.
$=$ sides
sides

Homework Answers

Remember to always give 2 names when classifying triangles!

Classify each triangle by its angles and sides. Equal sides and equal angles, if any, are indicated in each diagram.

Homework Answers - Packet p. 16

Sketch an example of the type of triangle described. Label the sides and angles with realistic measurements. If no triangle can be drawn, write "not possible."
19) right isosceles

4.3
21) right scalene

20) acute scalene

22) equilateral

Homework Answers

HW Answers: Finish Notes p. 14-15

1. For $\triangle \mathrm{DEF}$,
$e=52, f=41$, and $\mathrm{m} \angle F=48^{\circ}$. Find all possible $\mathrm{m} \angle E$ to the nearest degree.

F
$\mathrm{m} \angle \mathrm{E}=70.5^{\circ}$ or 109.5°
3. For $\triangle \mathrm{ABC}$,
$b=120, c=92$, and $\mathrm{m} \angle C=42^{\circ}$. How many triangles can be formed?
$2 \Delta s$

$\mathrm{m} \angle \mathrm{B}=60.8^{\circ}$ or 119.2°
2. For $\triangle \mathrm{LMN}$,
$l=27, m=15$, and $m \angle L=55^{\circ}$. Find all possible $\mathrm{m} \angle M$ to the nearest degree.

$$
\mathrm{m} \angle \mathrm{M}=27.1^{\circ}
$$

4. For $\triangle \mathrm{DEF}$,
$d=6, e=24$, and $\mathrm{m} \angle E=38^{\circ}$. How many Triangles can be formed?
1Δ

$$
\mathrm{m} \angle \mathrm{D}=8.9^{\circ}
$$

HW Answers: Finish Notes p. 14-15

5. For triangle $D E F, d=25, e=30$, and $m \angle E=40^{\circ}$. Find all possible measurements of f to the nearest whole number.

$$
f=44.48
$$

6. Given with , $b=15 \mathrm{~cm}$, and , solve the triangle.

$$
\begin{array}{ll}
\text { Case 1: } & \text { Case 2: } \\
\mathrm{C}=48.21^{\circ} & \mathrm{C}=131.79^{\circ} \\
\mathrm{A}=97.79^{\circ} & \mathrm{A}=14.21 .9^{\circ} \\
\mathrm{a}=26.58 & \mathrm{a}=6.58
\end{array}
$$

7. Given triangle $A B C, a=8, b=10$, and $m \angle A=34$, solve the triangle.

$$
\begin{array}{ll}
B=44.35^{\circ} & B=135.65^{\circ} \\
C=101.65^{\circ} & C=10.35^{\circ} \\
C=14.01 & C=2.57
\end{array}
$$

Tonight's Homework

Worksheet provided in class

Notes Day 8

Introduction to Sine and Cosine Graphs

You Need the printed Notes AND Notebook Paper

Graphing Sine \& Cosine - basic properties \& how they are derived from the Unit Circle

- Use a large Unit Circle to create Sine and Cosine Graphs
- Basic properties of Sine and Cosine Graphs Using the Unit Circle
$->y$ in circle $=$ sine values
$->x$ in circle $=$ cosine values
$->$ angles in the circle are independent variables so they become our x-values on the sine and cosine graphs
$->$ sine and cosine values are dependent upon the angle so they become our y-values on the sine and cosine graphs
- Reference the next few slides AND/OR Prentice Hall Algebra 2 Blue Textbook
$->$ Sine is in Section 13-4 p.720-721
$->$ Cosine is in Section 13-5 p.729-730

The Unit Circle

Not in Notes! Just watch! ;)

The "Unit Circle" is a circle with a radius of 1 .
Being so simple, it is a great way to learn and talk about lengths and angles.

The center is put on a graph where the x axis and y axis cross, so we get this neat arrangement here.

Sine, Cosine and Tangent

Because the radius is 1 , you can directly measure sine, cosine and tangent.

What happens when the angle, θ, is 0° ?

- $\cos 0^{\circ}=1, \sin 0^{\circ}=0$ and $\tan 0^{\circ}=0$

What happens when 8 is 90° ?

- $\cos 90^{\circ}=0, \sin 90^{\circ}=1$ and $\tan 90^{\circ}$ is undefined

Not in Notes! Watch this interactive unit circle ©

Day 8 (Monday's) Homework

Worksheet provided in class
(back of new unit outline)

Unit 5 Trigonometry Day 9

Graphs of
Sine and Cosine and Tangent
Amplitude, Midline, and Period of Sine and Cosine Graphs

Day 9 Warm-Up

Find each measurement indicated. Round your answers to the nearest tenth.

1) Find AC

2) Find AB

3) Find $A B$

4) Find BC

Day 9 Warm-Up ANSWERS

Find each measurement indicated. Round your answers to the nearest tenth.

1) Find AC 14

2) Find $A B$

8

3) Find AB 21

4) Find BC 45

Notes Day 8 \& 9 Let's see how to use the calculator to get these graphs!
 Notes p. 20-22

Complete the table below: Make sure your calculator is in degree mode!!

Complete the table below:

Degree	$\operatorname{Cos}(x)$	Point $($ Degree, $\operatorname{Cos}(x))$
0	1	$(0,1)$
30	0.866	$(30,0.866)$
60	0.5	$(60,0.5)$
90	0	$(90,0)$
120	-0.5	$(120,-0.5)$
150	-0.866	$(150,-0.866)$
180	-1	$(180,-1)$
210	-0.866	$(210,-0.866)$
240	-0.5	$(240,-0.5)$
270	0	$(270,0)$
300	0.5	$(300,0.5)$
330	0.866	$(330,0.866)$
360	1	$(360,1)$

Graph Cos(x)

Notes p. 21

Complete the table below:

Degree	$\operatorname{Tan}(x)$	Point (Degree, Tan $(x))$
0	0	$(0,0)$
30	0.577	$(30,0.577)$
60	1.73	$(60,1.73)$
90	Undefined	
120	-1.73	$(120,-1.73$
150	-0.577	$(150,-0.577)$
180	0	$(180,0)$
210	0.577	$(210,0.577)$
240	1.73	
270	Undefined	$(340,1.73)$
300	-1.73	$(330,-0.577)$
330	-0.577	$(360,0)$
360	0	

Graph Tan(x)

Notes p. 22

What happens to tangent at 90° and 270° ? Why is this happening?

Notes p. 23-24
 Graphs of Trig Functions

By each graph in your notes,
fill in some of the key features
as we discuss them on the next slides
I. Sine Graph

a. Sine is increasing:
$(0,90) \cup(270,360)$
b. Sine is decreasing:
$(90,270)$
c. Sine is positive:

$$
(0,180)
$$

d. Sine is negative:
$(180,360)$

Plot of Sine

This exact graph is not in your Notes. Write these comments beside the graph in your notes!

The Sine Function has this beautiful up-down curve (which repeats every 2π radians, or 360°).

It starts at 0, heads up to $\mathbf{1}$ by $\pi / 2$ radians (90°) and then heads down to -1.

Sine has a hill and a valley!

This graph has one cycle in the negative direction and one cycle in the positive direction.

You
 II. Cosine Graph

a. Cosine is increasing:
$(180,360)$
b. Cosine is decreasing:
(0, 180)
c. Cosine is positive:
$(0,90) \cup(270,360)$
d. Cosine is negative: :
$(90,270)$

This exact graph is not in your Notes. Write these

Plot of Cosine

 comments beside the graph in your notes!Cosine is just like Sine, but it starts at 1 and heads down until π radians (180°) and then heads up again.

This graph

 has one cycle in the negative direction and one cycle in the positive direction.

Graphs of Sine, Cosine and Tangent

 Plot of Sine and Cosine In fact Sine and Cosine are like good friends: they follow each other, exactly " $\pi / 2$ " radians, or 90°, apart.How are Sine and Cosine graphs related?

Sine and Cosine are Translations of each other by 90 degrees!

Plot of the Tangent Function

The Tangent function has a completely different shape ... it goes between negative and positive Infinity, crossing through 0 (every π radians, or 180°), as shown on this plot.

At $\pi / 2$ radians, or 90° (and $-\pi / 2,3 \pi / 2$, etc) the function is officially undefined, because it could be positive Infinity or negative Infinity.

III. Tangent Graph

a. Tangent is increasing:

$$
(0,90) \cup(90,270) \cup(270,360)
$$

b. Tangent is decreasing: never
c. Tangent is positive:
$(0,90) \cup(180,270)$
d. Tangent is negative:
$(90,180) \cup(270,360)$

Day 9 Notes continued Amplitudes, Midlines, and Period

Notes p. 24-27

Given the standard equation $y=a \sin (b x)$,
how does "a" affect the graph?

What are the similarities and differences between the $\mathbf{3}$ graphs??

The "a" affects the height of the graph.

Summary:

Amplitude:

a. Amplitude is the height of the graph from the midline
b. A graph in the form of:
$y=a \sin [b(x-c)]+d \quad$ and $\quad y=a \cos [b(x-c)]+d$
has an amplitude of $|a|$.
c. The amplitude of a standard sine or cosine graph is $\underline{1}$.
d. The amplitude of a sine or cosine graph can be found using the following formula:

$$
\text { amplitude }=|a|=\left|\frac{\max -\min }{2}\right|
$$

e. Find the amplitude for each of the following:

1. $\mathrm{y}=3 \sin \mathrm{x} \quad a m p=|3|=3$
2. $\mathrm{y}=-4 \cos 5 \mathrm{x} \quad a m p=|-4|=4$
3. $\mathrm{y}=(1 / 3) \sin \mathrm{x}+5 \quad$ amp $=\left|\frac{1}{3}\right|=\frac{1}{3}$

Summary continued

Midline:

The midline is the line that "cuts the graph in half."
The midline is halfway between the max and the min.
The midline can be found by using the following formula:

$$
\text { Midline is } y=\frac{(\operatorname{Max}+\operatorname{Min})}{2} \quad O R \quad y=M i n+\text { Amp }
$$

When there is no vertical shift, the midline is always the x-axis $(y=0)$.
(Ex: $y=\sin (x), y=2 \sin (x), y=\sin (3 x)$ all have a midline of $y=0$)

Midline Continued

Midline

moved

Period of a Function

Period is the length of 1 cycle.

$Y=\boldsymbol{\operatorname { s i n }}(x)$ has a period of $\underline{\mathbf{3 6 0}}$.
$f(x)=A \sin (B x)$
$y=\boldsymbol{\operatorname { c o s }}(x)$ has a period of $\underline{\mathbf{3 6 0}}$.
$y=\boldsymbol{\operatorname { t a n }}(\mathrm{x})$ has a period of $\underline{\mathbf{1 8 0}}$.

$\operatorname{Per}=\underbrace{|B|}_{\underbrace{\frac{2 \pi}{|B|}}=\frac{360^{\circ}}{|B|}}$

Note: this version of the formula is in
radians, which is not a focus in math 2
$f(x)=A \sin (B x)$

$\frac{2(180)}{|B|}=\frac{360^{\circ}}{|B|}$

 $y=\sin x ;$ period $=\frac{360^{\circ}}{1}=360^{\circ} \quad y=\cos x ;$ period $=\frac{360^{\circ}}{1}=360^{\circ}$ $y=\sin \left(\frac{1}{2} x\right) ; \operatorname{per}=\frac{360^{\circ}}{(1 / 2)}=720^{\circ} \quad y=\cos \left(\frac{1}{2} x\right) ; \operatorname{per}=\frac{360^{\circ}}{(1 / 2)}=720^{\circ}$ $y=\sin (2 x) ;$ per $=\frac{360^{\circ}}{2}=180^{\circ} \quad y=\cos (2 x) ;$ per $=\frac{360^{\circ}}{2}=180^{\circ}$

Let's Graph one together! Notes pg. 26

We'll graph one period in the positive direction and one period in the negative direction.
**TIP: divide each period into 8 even sections AND use the ASK feature in the calculator!*
($2^{\text {nd }}$ Window Indep -> ASK)
4. $y=0.5 \sin (x)$

Amplitude: $\underline{0.5} \quad$ Midline: $\underline{y=0} \quad$ Period: 360°

Always find the period before graphing!

Label both
axes!

Practice - you try the others! Notes pg. 26-27 \#5, 6, 7

For each problem:
*graph one period in the positive direction and *one period in the negative direction.

Remember to label the axes!
HINT: divide each period into 8 even sections AND use the ASK feature in the calculator!

Practice Answers

Graph one period in the positive direction and one period in the negative direction.
5. $y=5 \sin (x)+1$

Amplitude: $5 \quad$ Midline: $y=1 \quad$ Period: 360°

Always find the period before graphing!

Label both axes!

Practice Answers

Graph one period in the positive direction and one period in the negative direction.
6. $y=-2 \sin (3 x)$

Amplitude: $2 \quad$ Midline: $y=0 \quad$ Period: 120°

Practice Answers

We'll graph one period in the positive direction and one period in the negative direction.
7. $y=\cos (2 x)+1$

Amplitude: 1
Midline: $y=1$
Period: 180°

Always find the period before graphing!

Label both
axes!

