Day 4: Law of Sines, Area of Triangles with Sine

Warm-Up:

1. A tree 10 meters high cast a 17.3 meter shadow. Find the angle of elevation of the sun. $\Im \circlearrowleft$

$$(x) = \frac{10}{12.3}$$
 $(x) = \frac{10}{12.3}$
 $(x) = \frac{10}{17.3}$

2. A car is traveling up a slight grade with an angle of elevation of 2°. After traveling 1 mile, what is the vertical change in feet? (1 mile = 5280 ft)

3. A person is standing 50 meters from a traffic light. If the angle of elevation from the person's feet to the top of the traffic light is 25°, find the height of the traffic light.

$$\frac{\tan(25)}{50} = \frac{x}{50} = x = 50 \tan(25)$$

Notes 9.1 and 9.2 - Trigonometric Functions

In trigonometry, the <u>law of sines</u> can be used to find missing parts of triangles that are <u>oblique</u> triangles.

Let $\triangle ABC$ be any triangle with a, b, and c representing the measures of the sides opposite the angles with measures A, B, and C, respectively. Then

Example 1: Find b. В b

Example 2: Find B, a, and c.

$$\frac{Sin(93)}{9} = \frac{sin(B)}{16} = \frac{sin(58)}{C}$$
 you need an order of the across from each other But

(3)
$$\frac{\sin(93)}{a} = \frac{\sin(39)}{16} \rightarrow$$

The Law of Sines can be used to solve a triangle. Solving a Triangle means finding the measures of all the angles and all the sides of a triangle.

Example 3: Solve the Triangle.

Solve $\triangle ABC$ if $m \angle A = 33$, $m \angle B = 47$, and b = 14. Round angle measures to the nearest degree and side measures to the nearest tenth.

(3) m-A+m B+m C=180 33 + 47 +mcc=180 80 +m-(=180 m<C=(00)

Law of Sines is useful in these cases.

need angle 45'ide across from each other to

ASA

If subtract given angles from 180, you cange & last angle. Then you have adole + side across

Law of Sines can also be used in this case, but it is ambiguous.

have 4 +5 ide across from eachother

But can have morethan fractice one triangle in Break

NOTES Unit 5 Right Triangles

Honors Common Core Math 2

Į

9

Ex. 4 SSA Ambiguous Case

180-30.5= 149.5

=243,

$$\frac{2^{10}(92)}{C} = \frac{2^{10}(82)}{192}$$

S

pole

① 90-7=83

Indirect Measurement

When the angle of elevation to the sun is 62°, a telephone pole tilted at an angle of 7° from the vertical casts a shadow of 30 feet long on the ground. Find the length of the telephone pole to the nearest tenth of a foot.

$$3 \frac{5}{5} \frac{1}{(62)} = \frac{5}{5} \frac{1}{30}$$

Ex. 6 Another SSA Ambiguous Case

Solve a triangle when one side is 27 meters, another side is 40 meters

and a non-included angle is 33°.

$$\frac{37 \sin(8) = 40 \sin(33)}{37}$$

Concept Summary

Law of Sines

The Law of Sines can be used to solve a triangle in the following cases.

- Case 1 You know the measures of two angles and any side of a triangle. (AAS or ASA)
- Case 2 You know the measures of two sides and an angle opposite one of these sides of the triangle. (SSA)

Solve each $\triangle POR$ described below. Round angle measures to the nearest degree and side measures to the nearest tenth.

8.
$$m \angle R = 66, m \angle Q = 59, p = 72$$

9.
$$p = 32$$
, $r = 11$, $m \angle P = 105$ SSA

10.
$$m \angle P = 33$$
, $m \angle R = 58$, $q = 22$

11.
$$p = 28$$
, $q = 22$, $m \angle P = 120$

13.
$$q = 17.2, r = 9.8, m \angle Q = 110.7$$
 SSA

12.
$$m \angle P = 50$$
, $m \angle Q = 65$, $p = 12$

13.
$$q = 17.2, r = 9.8, m \angle Q = 110.7$$
 SSA

Concept Summary

The Law of Sines can be used to solve a triangle in the following cases.

You know the measures of two angles and any side of a triangle. (AAS or ASA)

Case 2 You know the measures of two sides and an angle opposite one of these sides of the triangle. (SSA)

Solve each ΔPQR described below. Round angle measures to the nearest degree and side measures to the nearest tenth.

8.
$$m \angle R = 66$$
, $m \angle Q = 59$, $p = 72$

9.
$$p = 32$$
, $r = 11$, $m \angle P = 105$

10.
$$m \angle P = 33$$
, $m \angle R = 58$, $q = 22$

11.
$$p = 28$$
, $q = 22$, $m \angle P = 120$

12.
$$m \angle P = 50$$
, $m \angle Q = 65$, $p = 12$

13.
$$q = 17.2, r = 9.8, m \angle Q = 110.7$$

