Unit 5 Day 11

Solving Trig Functions

(3) Warm-up Day 11

1. A water skier must be at least a horizontal distance of 50 feet from the boat in order to safely avoid undertow from the propeller. If the angle of elevation is 35° from the skier to the pole how long is the rope? (round to nearest hundredth)

$$
x=61.04 \mathrm{ft}(\mathrm{cos})
$$

2. A 21-foot tree needs trimming. Safety guidelines say the angle made by the ladder and the ground should be 70°. How long should the ladder be to reach the top of the tree?

$$
x=22.35 \mathrm{ft}(\sin)
$$

3. An isosceles triangle has a 34 degree vertex angle and a base 17 cm long. What is the perimeter of the triangle?

$$
75.15 \mathrm{~cm}
$$

4. A person sitting on the balcony of her hotel room in Manhattan spots a skyscraper that is 420 feet away. From the balcony, the angle of elevation for the top of the skyscraper is 23° and the angle of depression to its base is 48°. How tall

Done early?
Start the table
below the
questions! is the skyscraper?
644.74 ft

Homework Answers

Packet p. 21 Part II

1) $y=\sin 3 \theta$

2) $y=4 \cos 3 \theta$

Homework Answers

3) $y=2 \sin \frac{\theta}{3}$
4) $y=\tan 2 \theta$

Homework Answers

5) $y=3 \cos \frac{\theta}{2}$

6) $y=\frac{1}{2} \tan \theta$

Homework Answers Packet p. 23-24

For each function, find the amplitude, period, and midline then graph one cycle. Remember to label your axis!

1. $y=3 \cos (\theta)$

$$
\text { 2. } y=-2 \sin (\theta)
$$

3. $y=2 \cos (2 \theta)+1$
4. $y=\sin (3 \theta)-2$

Amp. $=2|-2|$
$A m p .=2|2|$
Amp. $=3 \quad|3|$
Per. $=360^{\circ} \frac{360}{1}$
Midline: $y=0$

Per. $=180^{\circ} \frac{360}{2}$
Midline: $y=1$
Amp. $=1|1|$
Per. $=360^{\circ} \quad \frac{360}{1}$
Midline: $y=0$

5) $B=117^{\circ}, c=5.3, a=8.7$
6) $\mathrm{A}=46^{\circ}, \mathrm{B}=60^{\circ}, \mathrm{C}=74^{\circ}$
7) No Solution (No triangle is possible because side b is too short)
8) $\mathrm{a}=40.5, \mathrm{~B}=52^{\circ}, \mathrm{C}=75^{\circ}$

Homework Answers

9) $\mathrm{Amp}=4, \quad$ Period $=12^{\circ}, \quad$ Midline: $y=9$
10) 22.7 feet
11) Isosceles acute triangle
12) Equilateral equiangular Δ
13) Isosceles obtuse triangle
14) Isosceles obtuse triangle
15) 19.2 feet
16) Scalene obtuse triangle
17) Scalene right triangle
18) Equilateral equiangular Δ
19) Equilateral equiangular Δ
20) Scalene obtuse triangle

Tonight's Homework

Packet p. 19-20 AND Study for Quiz 2

Notes p. 25 (below warm-up)

Remember!!!

a. Angles are measured in radians or degrees
b. We have to check our mode to make sure the calculator knows what measure we are using!!
i. In this class, we will always use degrees, but you should know that radians exist!
$\square \rightarrow$ Make sure degree is highlighted

Notes continued

Solving Sine, Cosine and Tangent Equations

1. We can solve equations involving sine_cosine and
tangent just like any other equation!
2. Inverse operations of sine, cosine and tangent
i. Sine $\rightarrow \operatorname{Sin}^{-1}$
ii. Cosine $\rightarrow \operatorname{Cos}^{-1}$
iii. Tangent \rightarrow Tan $^{-1}$

Solving Trig Equations

Use the inverse trig functions on your calculator to solve the following equations:
a. $\sin (x)=0.3 \quad x=17.46^{\circ}$
b. $\sin (x+2)=1.5$ No solution- sine is always between -1 and 1
c. $3 \sin (x)=2 \quad \mathrm{x}=41.81^{\circ}$

Remember to always isolate BEFORE doing the Inverse! ©

Sometimes, there are more than one answer. In Honors Math 2, we're only going to talk about one of them

$$
\begin{gathered}
2 \sin x-1=0 \\
2 \sin x=1 \\
\sin x=\frac{1}{2}
\end{gathered}
$$

You Try:

Solve the equations and express your answer to the nearest tenth degree:

$$
\begin{array}{ccc}
\text { 1. } \sin (x)=0.6 & \text { 2. } \cos (x)=1.5 & \text { 3. } \tan (x)=-6.7 \\
x=36.9^{\circ} & \text { No solution } & x=-81.5^{\circ} \\
\text { 4. } \cos (x)=-0.87 & \text { 5. } 3 \sin (x)=1.5 & \text { 6. } 4 \sin (x)=1.2 \\
x=150.5^{\circ} & x=30^{\circ} & x=17.5^{\circ}
\end{array}
$$

More Practice at the

top of pg. 30 (if time allows)

Solve the following equations and express your answer to the nearest tenth degree:

1)$\sin (x)=0.8$ $x=53.1^{\circ}$	2) $\cos (x)=-0.78$	3) $\tan (x)=-9.5$	4) $\sin (x)=0.366$
		$x=-84^{\circ}$	$x=21.5^{\circ}$
5) $\sin (x)=-0.768$	6) $3 \tan (x)=-12.8$	7) $3 \sin (x)+4=1.57$	8) $4 \cos (x)-6=-5.2$
$x=-50.2^{\circ}$	$x=-76.8^{\circ}$	$x=-54.1^{\circ}$	$x=78.5^{\circ}$

On Notebook Paper: Solving more involved Trigonometric Equations

Together!

1) $\sin (x)-\frac{\sqrt{3}}{2}=0$
2) $2 \sin (x) \cos (x)=\sqrt{3} \sin x$

Sometimes, we have to factor. Set equation $=0$, then factor out $\sin (x)$ which is our GCF! :

$$
x=60^{\circ}
$$

$$
x=0^{\circ} \text { or } 30^{\circ}
$$

On Notebook Paper: Solving more involved Trigonometric Equations

You Try!

3) $2 \cos (x)-1=0$
4) $3 \cos (x)+2=2 \cos x+1$

$$
x=60^{\circ}
$$

$$
x=180^{\circ}
$$

On Notebook Paper: Solving even

more involved trigonometric Equations

Together!

1) $\cos (2 x)-\frac{\sqrt{3}}{2}=0$
2) $\sin ^{2}(x)=1$

Remember the difference
of squares?

$$
x=15^{\circ}
$$

$$
x=90^{\circ} \text { or }-90^{\circ}
$$

Remember to isolate first, then do the inverse. Show your work as you go because sometimes there are steps AFTER you take the inverse! ()

Notes p. 30 Solving even more involved trigonometric Equations

You Try!
3) $2 \sin (x) \cos (x)=\sqrt{2} \cos x$
4) $\sin (3 x)+\frac{1}{2}=0$

$$
x=90^{\circ} \text { or } 45^{\circ}
$$

$$
x=-10^{0}
$$

An Exploration

-Work with your partner

- Raise your hand when you are finished

> Notes p. 30-31

Practice and further exploration

Use your graphing calculator to answer the following questions.

1. Use your calculator to find the following trig ratios. Round your answers to the nearest thousandth.

| $\operatorname{Sin}(20)=$ | 0.342 | $\operatorname{Cos}(40)=0.766$ | $\operatorname{Tan}(70)=2.747$ |
| :--- | :--- | :--- | :--- | :--- |
| $\operatorname{Sin}(83)=$ | 0.616 | $\operatorname{Cos}(75)=0.259$ | $\operatorname{Tan}(25)=0.466$ |

2. Find the sine, cosine, and tangent of a right triangle with a hypotenuse of 1 and angle of elevation of 45°.
a) What is the sine of 45°, rounded to the nearest thousandth? \qquad
b) What is the cosine of 45°, rounded to the nearest thousandth? 0.707
c) What is the tangent of 45°, rounded to the nearest thousandth? 1
d) What is special about the sine and cosine of 45° ?

$$
\sin (45) \text { and } \cos (45) \text { are equal }
$$

e) What is special about the tangent of 45° ?

$$
\tan (45)=1
$$

3. Use your calculator to find the following sine and cosine ratios.

$\operatorname{Cos}(20)=0.94$	$\operatorname{Cos}(30)=0.866$
$\operatorname{Sin}(70)=0.94$	$\operatorname{Sin} 60=0.866$
$\operatorname{Cos}(60)=0.5$	$\operatorname{Cos}(75)=0.259$
$\operatorname{Sin}(30)=0.5$	$\operatorname{Sin}(15)=0.259$

What do you notice about sine and cosine when the angles add to 90° ? They are equal
4. Use your calculator to find the following:

$\operatorname{Tan}(40)=$	$\frac{\sin (40)}{\cos (40)}=0.839$	$\operatorname{Tan}(50)=$ 1.192	$\frac{\sin (50)}{\cos (50)}=1.192$

What conclusion can you draw about the relationship between the tangent function and sine and cosine?

Homework

Packet p. 19-20

