Unit 5 Day 10

Writing Equations given Graphs of Trig Functions

Practice Graphs of Trig Functions

Warm-up Day 10 Notes p. 27-28

1. Find the amplitude, period and midline. Then, graph each Trig Function with 1 cycle in the negative direction and 1 cycle in the positive direction.

$$
\begin{array}{ll}
\text { a. } y=-4 \sin (3 x) & \text { b. } y=\cos (2 x)+1
\end{array}
$$

2. The graph shown displays the level of water at a boat dock, which varies due to the tides. Determine the amplitude, midline, and period of the graph.
HINT: Use the
formulas Depth

in | of |
| :--- |
| yesterday's Water |

notes! :)
4. In the figure shown, a pole has two wires attached to it, one on each side, forming two right triangles. How far from the base of the pole does Wire 2 attach to the ground?

17 ft

Warm-up Answers

1. Find the amplitude, period and midline. Then, graph each Trig Function with 1 cycle in the negative direction and 1 cycle in the positive direction.

$$
\begin{array}{ll}
\text { a. } y=-4 \sin (3 x) \quad & \text { Amp }=4(\text { NOT }-4), \quad \text { period }=120^{\circ}, \\
& \text { midline: } y=0
\end{array}
$$

b. $y=\cos (2 x)+1 \quad$ Amp $=1, \quad$ period $=180^{\circ}$, midline: $\mathrm{y}=1$

Warm-up Answers

3. The graph shown displays the level of water at a boat dock, which varies due to the tides. Determine the amplitude, midline, and period of the graph.

\# of Hours after Midnight
midline: $\mathrm{y}=9$

$$
\begin{array}{rlr}
y=\frac{\max +\min }{2}=\frac{13+5}{2} \quad \text { OR } \quad \begin{aligned}
y & =\min +a m p \\
y & =5+4
\end{aligned}
\end{array}
$$

period = 12 hours
(do end x-value - start x-value of 1 cycle)

Warm-up Answers

Problems like Released

 Exam Items!4. In the figure shown, a pole has two wires attached to it, one on each side, forming two right triangles. How far from the base of the pole does Wire 2 attach to the ground?

$\tan (54)=x / 17$
where $x=$ pole height
Cross multiply to find $x=23.398 \mathrm{ft}$
$\tan (32)=y / 23.398$
where $y=$ how far base of pole attaches from ground
Cross multiply to find $\mathrm{y}=14.6 \mathrm{ft}$

Homework Answers

Packet p. 21 Part I:

1. A	2. B	3. C
4. E	5. F	6. D

Packet p. 22

1. $y=3 \cos (x) \quad$ period: 360° Amplitude: 3 Midline: $y=0$

Homework Answers

2. $y=4 \sin (x)$
peried 360° Amplitude: 4
Midline: $y=0$

3. $y=-2 \cos (x)$
penod 360° Amplitude: 2
Midline: $y=0$

Tonight’s Homework

- Packet p. 21 Part II
- Packet p. 23, 24
**WARNING HW Pages are NOT in order for this half of the unit! Go by the assignments on the outline!

Let's talk about HW p. 21

For ones like Part II \#1:

1) $y=\sin 3 \underline{\theta}<-$ Enter into calc as $y=\sin (3 x)$

Day 10 Notes Part 1: Interpreting Graphs of Trig Functions

Interpreting Graphs of Trig Functions

 I. Amplitude and Midlinea. The amplitude can be found by using the following formula:

$$
\mathrm{amp}=|\mathrm{a}|=\frac{|\max -\min |}{2}
$$

b. The midline can be found using the following formula:

$$
\text { Midline is } y=\left(\frac{\operatorname{Max}+\operatorname{Min})}{2} \quad \text { OR } \quad y=\operatorname{Min}+\operatorname{Amp}\right.
$$

Together

c. Find the amplitude and midline for each of the following graphs:

Midline: $y=0$
Amplitude: 7
2.

Midline: $y=5$
Amplitude: $1 / 4$

You Try!

3.

4.

Midline: $y=4$
Amplitude: ½

Midline: $y=0$
Amplitude: $1 / 2$

Practice

1. Identify the amplitude, period, and midline of the following trig function. Hint: it may help to trace out one cycle.

State the amplitude, period, and midline of each of the following:

$$
\text { 2. } y=(1 / 2) \sin (x)
$$

3. $y=-5 \cos (3 x)$
4. $y=\sin (x+5)-6$
5. $\mathrm{y}=2 \cos (\mathrm{x})+3$

Practice Answers

1. Identify the amplitude, period, and midline of the following trig function. Hint: it may help to trace out one cycle.

$A m p=1.5$, per $=360^{\circ}$,
midline: $\mathrm{y}=0$

State the amplitude, period, and midline of each of the following:

$$
\begin{aligned}
& \text { 2. } y=(1 / 2) \sin (x) \\
& \text { Amp }=1 / 2, \text { per }=360^{\circ} \text {, } \\
& \text { midline: } y=0 \\
& \text { 3. } y=-5 \cos (3 x) \\
& \text { Amp }=5, \text { per }=120^{\circ} \text {, } \\
& \text { midline: } y=0 \\
& \text { 4. } y=\sin (x+5)-6 \\
& \text { Amp }=1, p e r=360^{\circ} \text {, } \\
& \text { midline: } y=-6 \\
& \text { 5. } y=2 \cos (x)+3 \\
& \text { Amp }=2, p e r=360^{\circ} \text {, } \\
& \text { midline: } y=3
\end{aligned}
$$

Day 10 Notes Part 2:

 Writing Equations of Trig Functions
Notes: Writing an equation given a trig graph

To write an equation of a trigonometric function when given a graph, first determine amplitude, period, and midline of the graph.
**HINT: tracing one cycle of the graph can help determine these values AND decide if sine or cosine is better.

Then use those values and the formulas to calculate a, b, and d of the standard equation $y=a \sin (b x)+d$ or $y=a \cos (b x)+d$.

The standard equations are

$$
y=a \sin (b x)+d \quad \text { and } \quad y=a \cos (b x)+d
$$

Formulas we must know

$$
\text { Amplitude }=|a|=\left\lvert\, \frac{\max -\min \mid}{2}\right.
$$

Period $=\underline{360^{\circ}}=$ end - start | b |

Midline is $y=(\underline{M a x}+\operatorname{Min})=d \quad$ OR $y=M i n+A m p=d$ 2

Write the equation for the following trigonometric functions.

1) A radio transmitter sends a radio wave from the top of a 50 -foot tower. The wave is represented by the accompanying graph.

Starting at the y-axis, we have Hill then Valley \rightarrow we should use sine
Amp: $|\max -\min | / 2=|1--1| / 2=2 / 2$ $a=1$
Period $\rightarrow 1^{\text {st }}$) draw the rest of 1 cycle then end - start $=360-0=360$

$$
\begin{aligned}
& \text { per }=360 / b \\
& 360=360 / b \rightarrow b=1
\end{aligned}
$$

Midline: $y=0 \rightarrow d=0$
Again, it's Hill then valley \rightarrow do sine $y=\sin (x)$

Write the equation for the following trigonometric functions.

2) The accompanying graph represents a portion of a sound wave.

Starting at y-axis, we have Hill then
Valley \rightarrow do sine

Write the equation for the following trigonometric functions.

3)

Starting at y-axis, we have one big Valley \rightarrow do cosine

Amp: $|5-(-5)| / 2=5 \rightarrow \mathrm{a}=5$
Period \rightarrow trace out 1 cycle $8-0=8$

$$
\text { per }=360 / b
$$

$$
8=360 / b \rightarrow b=45
$$

Midline: $y=0, d=0$
Again, One big Valley \rightarrow do cosine $y=5 \cos \left(45^{\circ} x\right)$

You Try! Write the equation for the following trigonometric functions.

4)

$y=-2 \cos (x)$
5)

$y=-2 \sin \left(90^{\circ} x\right)$

You Try! Write the equation for the following trigonometric functions.

\# of Hours after Midnight

The figure at the left shows that the depth of water at a boat dock varies with the tides. The depth is 6 feet at low tide and 12 feet at high tide. On a certain day, low tide occurs at 6 AM and high tide occurs at 12 Noon.

$$
y=3 \cos \left(30^{\circ} x\right)+9
$$

Graphing Practice

Next page in the Notes \# 1-4 (Questions on next slide)

Graphing Practice

Graph the following functions over two periods, one in the positive direction and one in the negative directions. Label the axes appropriately.

1. $y=-2 \sin (3 x) \quad$ Amp: \qquad Midline: \qquad Per: \qquad
2. $y=\cos (2 x)-1 \quad$ Amp: \qquad Midline: \qquad Per: \qquad
3. $y=3 \sin (1 / 2 x) \quad$ Amp: \qquad Midline: \qquad Per: \qquad
4. $y=-2 \cos (4 x)+1$ Amp: \qquad Midline: \qquad Per: \qquad

Graphing Practice Answers

Graphing Practice: Graph the following functions over two periods, one in the positive direction and one in the negative directions. Label the axes appropriately.

Graphing Practice Answers

Graphing Practice: Graph the following functions over two periods, one in the positive direction and one in the negative directions. Label the axes appropriately.

Kahoot for Practice

- https://play.kahoot.it/\#/k/39a98280-e035-4016-a337-32a5abe29af7

Practice

EXTRA - not in notes

An architect commissions a contractor to produce a triangular window. The architect describes the window as triangle $A B C$ where $m<A=50, B C=10$ inches, and $A B=12$ inches.

Find the missing measures of the window.
Round sides to the tenths place and angles to the nearest degree.

$$
\begin{gathered}
m<C=67, m<B=63, b=11.6 \\
O R \\
m<C=113, m<B=17, b=3.8
\end{gathered}
$$

