Notes Day 11

Reminders about Amplitude and Midline

The amplitude can be found by using the following formula:

Amplitude =
$$|a| = |\frac{max - min}{2}|$$

The midline can be found using the following formula:

Midline is
$$y = (Max + Min)$$
 OR $y = Min + Amp$

Midline is
$$y = (Max + Min)$$
 OR $y = Min + Amp$

Together!

Find the amplitude and midline for each of the following graphs:

max=51/3

Amplitude = | a | = | <u>max - min</u> | 2

Midline is y = (Max + Min) OR y = Min + Amp

You Try!!

Find the amplitude and midline for each of the following graphs:

3. Max 4.5 Man 3.5

3

max 1/2 min 1/2

amp=4,5-3,5=[1=amp]

amp = 1/2-72

= = amp

midline y= 4.5+3.5= 8 y=4 midline

e y= 1/2+1/2=0

DR 4 = - 15+ 15

Whiteboard Review

Determine the Amplitude, Period, and Midline of the Function.

$$y = -4\cos(3x)$$
 $per = 360 = 120^{\circ}$
 $y = 3\sin(2x) + 1$
 $amp = |3| = 3$
 $per = 360 = 180^{\circ}$
 $per = 360 = 180^{\circ}$

Graph each Trig Function with 1 cycle in the negative direction and 1 cycle in the positive direction.

$$y = -4 \cos(3x)$$

 $y = 3 \sin(2x) + 1$

A plane is flying at an altitude of 12,000 m. From the pilot, the angle of depression to the airport tower is 32°. How far is the tower from a point directly beneath the plane?

A great white shark swims 22 feet below sea level. If the shark is 67.7 feet from the sailboat, what is the angle of depression of the boat to the shark?

Solve the equation for x.

$$\cos^{2} x = \frac{\cos \sqrt{3}}{2}$$

$$2x = \cos^{-1} \left(\frac{\sqrt{3}}{2} \right)$$

$$2x = 30^{\circ}$$

$$x = 15^{\circ}$$

Solve the equation for x.

$$\cos x - \sin x \cos x = 0$$

$$\cos x (1 - \sin x) = 0$$

$$\cos x = 0 \quad 1 - \sin x = 0$$

$$\cos x = \cos^{2}(0) \quad 1 = \sin x$$

$$\cos^{2}(0) \quad \sin^{2}(1) = x$$

$$\cos^{2}(0) \quad \sin^{2}(1) = x$$

Come up with two trig functions (one cosine, one sine) that will equal the same ratio.