Inverse \& Joint Variations

Unit 4 Day 9

Warm-Up: Released Exam Items \& Practice.

Show your work to complete these problems. Do NOT just circle an answer!

1. The equation $2 \sqrt{5 x}$ can be used to estimate speed, s, of a car in miles per hour, given the length in feet, x, of the tire marks it leaves on the ground. A car traveling 90 miles per hour came to a sudden stop. According to the equation, how long would the tire marks be for this car?
A. 355 feet
B. 380 feet
C. 405 feet
D. 430 feet
2. Which function is even?
A. $f(x)=(x+2)(x-2)$
B. $f(x)=x(x+2)$
C. $f(x)=(x+1)(x-2)$
D. $f(x)=(x-1)(x-1)$
3. A marathon is roughly 26.2 miles long. Which equation could be used to determine the time, t, it takes to run a marathon as a function of the average speed, s, of the runner where t is in hours and s is in miles per hour?
A. $t=26.2-26.2 \mathrm{~s}$
B. $t=26.2-s / 26.2$
C. $\mathrm{t}=26.2 \mathrm{~s}$
D. $t=26.2 / \mathrm{s}$

Warm-Up Continues....Practice Graphing Inverse Variation.
Do a table for each branch and completely graph the function! Also, indicate the horizontal and vertical asymptotes, domain, and range for each function.

	x	y
	Looks	$-1 / 2$
familiar,	-1	-2
right?	-2	-1
rish	-4	$-1 / 4$

		y
	Looks	$-1 / 2$
	-4	
familiar,	-1	-2
right?	-2	$-1 / 2$
	-4	$-1 / 4$

HINT: You may want to try these by hand... good test preparation! ©

Warm-Up: Released Exam Items \& Practice.

Show your work to complete these problems. Do NOT just circle an answer!

1. The equation can be used to estimate speed, s, of a car in miles per hour, given the length in feet, x, of the tire marks it leaves on the ground. A car traveling 90 miles per hour came to a sudden stop. According to the equation, how long would the tire marks be for this car?
A. 355 feet
B. 380 feet
C. 405 feet
D. 430 feet
2. Which function is even?

$$
\begin{array}{ll}
\text { A. } f(x)=(x+2)(x-2) & \text { B. } f(x)=x(x+2) \\
\text { C. } f(x)=(x+1)(x-2) & \text { D. } f(x)=(x-1)(x-1)
\end{array}
$$

3. A marathon is roughly 26.2 miles long. Which equation could be used to determine the time, t, it takes to run a marathon as a function of the average speed, s, of the runner where t is in hours and s is in miles per hour?
A. $t=26.2-26.2 \mathrm{~s}$
B. $t=26.2-s / 26.2$
C. $t=26.2 \mathrm{~s}$
D. $t=26.2 / \mathrm{s}$

4. Graphing Inverse Variation...

Make a table of values
for each branch!

x	y		x	y
$1 / 4$	4		$-1 / 4$	-4
$1 / 2$	2		$-1 / 2$	-2
1	1		-1	-1
2	$1 / 2$		-2	$-1 / 2$
4	$1 / 4$		-4	$-1 / 4$

Looks familiar, right?
$H A: y=0$
$V A: x=0$
Domain: $(-\infty, 0) \cup(0, \infty)$
Range: $(-\infty, 0) \cup(0, \infty)$

Plot at least 5 exact points

Graphing Inverse Variation.....

 per branch!$$
\begin{array}{cl}
\text { nch! } & y=\frac{2}{x} \\
\text { 5. } & \text { VA: } y=0 \\
\end{array}
$$

$$
\text { 6. } y=\frac{-5}{x}
$$

Tonight's Homework Packet p. 13-15

Remember: Quiz Tomorrow!
We also have a lesson, so tonight *check HW online AND
*work the warm-up in the notes

Homework Answers

1. $y=7.25 \bullet x^{1}$
2. $y=144 \bullet x^{-1}$
Direct because $\mathbf{x}^{\mathbf{1}}$
6.25 miles
Indirect because $\mathbf{x}^{\mathbf{- 1}}$
2.4 people
OR $y=144 / x$
3. $y=9 \bullet x^{1}$
Direct because $\mathbf{x}^{\mathbf{1}}$
111.1 hours
4. $y=5 x^{4} \quad$ Symmetry over y-axis Even Function Most similar to $y=x^{2}$ because positive even exponent
5. \leadsto
$y=3 x^{-6} \quad$ Symmetry over y-axis Even Function
Most similar to $\mathrm{y}=\mathrm{x}^{-2}$ because negative even exponent
6. $\xlongequal{\wedge}$
$y=1 / 2 x^{-5} \quad$ Symmetry about origin Odd Function
Most similar to $\mathrm{y}=\mathrm{x}^{-1}$ because negative odd exponent
7. ψ
$y=1 / 6 x^{8} \quad$ Symmetry over y-axis Even Function Most similar to $y=x^{2}$ because positive even exponent

Homework Answers

$y=8 x^{9} \quad$ Symmetry about the origin Even Function

 Most similar to $y=x^{3}$ because positive odd exponent

$$
y=4(x-3)(x+3)
$$

Note: This is a quadratic with roots at $x=3,-3$ NOT a power function
Symmetry over y-axis Even Function Most similar to $y=x^{2}$ because positive even exponent

$y=-2 x(x+3)$
Note: This is a quadratic with roots at $x=0,-3$ NOT a power function
No Symmetry
Neither even nor odd Function Most similar to $y=x^{2}$ because positive even exponent

Notes Day 9

Inverse \& Joint Variations

Inverse Variations

A relationship that can be written in the form $y=\frac{k}{x}$, where k is a nonzero constant and $x \neq 0$, is an inverse variation. The constant k is the constant of variation.

Multiplying both sides of by x gives $\quad \mathrm{y} \cdot \mathrm{x}=\mathrm{k}$
So, the product of x and y in an inverse variation is k , the constant

Inverse Variations

WORDS	NUMBERS	ALGEBRA
y varies inversely as x.	$y=\frac{3}{x}$	$y=\frac{k}{x}$
y is inversely proportional to x.	$x y=3$	$x y=k(k \neq 0)$

There are two methods to determine whether a relationship between data is an inverse variation. You can write a function rule in $y=\frac{k}{x}$ form, or you can check whether $x y$ is a constant for each ordered pair.

Example: Tell whether the relationship is an inverse variation. Explain. If it is an inverse variation, write the equation.

Yes, inverse variation
$\mathbf{x y = 3 0}=\mathbf{k}$ (constant)
2.

3. $2 x y=28$

Yes, inverse variation

$$
\mathrm{xy}=14=\mathrm{k} \text { (constant) }
$$

$$
y=\frac{14}{x}
$$

NOT inverse variation
xy $\neq \mathbf{k}$ (constant)

You Try!! Remember: You can write a function rule in $y=\frac{k}{x}$ form, or you can check whether $x y$ is a constant for each ordered pair.

Tell whether the relationship is an inverse variation. Explain. If it is an inverse variation, write the equation.
4.

\mathbf{x}	\mathbf{y}
-12	24
1	-2
8	-16

xy
$\mathbf{x y}$
-288
-2
-128

NOT inverse variation xy $\neq \mathbf{k}$ (constant)
5.

Yes, inverse variation $\mathbf{x y =} \mathbf{~ = ~} \mathrm{k}$ (constant)

$$
y=\frac{9}{x}
$$

NOT inverse variation
$\mathbf{x y} \boldsymbol{\neq k}$ (constant)

Examples:

Write and graph the inverse variation in which $y=0.5$ when $x=-12$.

Steps:

1. Find K. $(k=x y)$
2. Write new equation as $y=k / x$ 3. Graph on grid.

$$
\begin{aligned}
y & =\frac{k}{x} \\
\frac{0.5}{1} & =\frac{k}{-12} \\
k & =-6
\end{aligned}
$$

You Try!

Write and graph the inverse variation in which $\mathrm{y}=1 / 2$ when $\mathrm{x}=10$

Steps:

1. Find $\mathrm{K} .(\mathrm{k}=\mathrm{xy})$
2. Write new equation as $y=k / x$
3. Graph on grid.

$$
\begin{aligned}
y & =\frac{k}{x} \\
\frac{0.5}{1} & =\frac{k}{10} \\
k & =5
\end{aligned}
$$

Examples

The inverse variation $x y=350$ relates the constant speed x in mi / h to the time y in hours that it takes to travel 350 miles. Determine a reasonable domain and range and then graph this inverse variation.

$$
y=\frac{350}{x}
$$

Practical Domain: $(0, \infty)$

Practical Range: $(0, \infty)$ | x | y |
| :---: | :---: |
| 1 | 350 |
| 2 | 175 |
| 5 | 70 |
| | 10 |
| | 35 |
| | 100 |

You Try!

The inverse variation $x y=100$ represents the relationship between the pressure x in atmospheres (atm) and the volume y in mm^{3} of a certain gas. Determine a reasonable domain and range and then graph this inverse variation.

$y=\frac{100}{x}$	x	y
	1	100
	2	50
	5	20
Practical Domain:($0, \infty$) Practical Range: $(0, \infty)$	10	10
	25	4
	50	2

Product Rule for Inverse Variation

If $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are solutions of an inverse variation, then $x_{1} y_{1}=x_{2} y_{2}$.

Examples
5. Let $\mathrm{x}_{1}=5, \mathrm{x}_{2}=3$, and $\mathrm{y}_{2}=10$. Let y vary inversely as x . Find y_{1}.

$$
\begin{aligned}
x_{1} y_{1} & =x_{2} y_{2} \\
5 \cdot y_{1} & =3 \cdot 10
\end{aligned}
$$

$$
\text { So... } x y=k \text { every time! }
$$

$$
5 y_{1}=30
$$

$$
y_{1}=6
$$

Product Rule for Inverse Variation

If $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are solutions of an inverse variation, then $x_{1} y_{1}=x_{2} y_{2}$.

You Try!

6. Let $x_{1}=2, y_{1}=-6$, and $x_{2}=-4$. Let y vary inversely as x. Find y_{2}.
7. Boyle's law states that the pressure of a quantity of gas x varies inversely as the volume of the gas y. The volume of gas inside a container is $400 \mathrm{in}^{3}$ and the pressure is 25 psi . What is the pressure when the volume is compressed to $125 \mathrm{in}^{3}$?
8. On a balanced lever, weight varies inversely as the distance from the fulcrum to the weight.
The diagram shows a balanced lever. How much does the child weigh?

ANSWERS!

6. Let $\mathrm{x}_{1}=2, \mathrm{y}_{1}=-6$, and $\mathrm{x}_{2}=-4$. Let y vary inversely as x . Find y_{2}.

$$
\begin{aligned}
x_{1} y_{1}=x_{2} y_{2} \quad 2 \cdot-6 & =-4 \cdot y_{2} \\
-12 & =-4 y_{2}
\end{aligned} \quad y_{2}=3
$$

7. Boyle's law states that the pressure of a quantity of gas x varies inversely as the volume of the gas y. The volume of gas inside a container is $400 \mathrm{in}^{3}$ and the pressure is 25 psi . What is the pressure when the volume is compressed to $125 \mathrm{in}^{3}$?

$$
\begin{array}{cc}
x_{1} y_{1}=x_{2} y_{2} \quad 400 \cdot 25=125 \cdot y_{2} \\
10000=125 y_{2}
\end{array} \quad y_{2}=80 \mathrm{psi}
$$

8. On a balanced lever, weight varies inversely as the distance from the fulcrum to the weight.
The diagram shows a balanced lever. How much does the child weigh?

$$
3.2 \cdot y_{1}=4.3(60)
$$

$$
x_{1} y_{1}=x_{2} y_{2} \quad 3.2 y_{1}=258 \quad y_{1}=80.625 \mathrm{lbs}
$$

Occurs when 1 quantity varies directly as the product of 2 or more other quantities.

Form $\quad z=k x y \quad, x \neq 0, z \neq 0$

Ex: The area of a trapezoid varies jointly as the height h and the sum of its bases b_{1} and b_{2}. Find the equation of joint variation if $A=48$ $\mathrm{in}^{2}, \mathrm{~h}=8 \mathrm{in}, \mathrm{b}_{1}=5 \mathrm{in}$, and $\mathrm{b}_{2}=7 \mathrm{in}$.
$A=k h\left(b_{1}+b_{2}\right) \quad 48=k(96) \quad 1 / 2=k$
$48=k(8)(5+7)$

$$
A=1 / 2 h\left(b_{1}+b_{2}\right)
$$

Write an equ

- y varies directly with x and inversely with z^{2}.
- y varies inversely with x^{3}.

$$
\frac{k}{x^{3}} \quad y=\frac{k x}{z^{2}}
$$

- y varies directly with x^{2} and inversely with z.

$$
y=k x^{2}
$$

- z varies jointly with x^{2} and $y . \quad z=k x^{2} y$
- y varies inversely with x and z.

$$
y=\underline{k}
$$

Yo凹 Tøy!

Tell whether x and y show direct variation, inverse variation, or neither.
1.) $x y=1 / 4$

Inverse
$k=1 / 4$
3.) $\frac{y}{x}=12$

Direct
k = 12
4.) $y=\frac{1}{x}$

Inverse
k=1

Write the function that models each relationship. Find z when $\mathrm{x}=6$ and $\mathrm{y}=4$.
5. z varies jointly with x and y. When $x=7$ and $y=2, z=28$.

$$
\begin{array}{llll}
z=k x y & 2=k & & z=2(6)(4) \\
\cline { 2 - 3 } & z=k(7)(2) & z=2 \times y & z=48 \\
\hline
\end{array}
$$

6. z varies directly with x and inversely with the cube of y. When $x=8$ and $y=2, z=3$.
$z=\frac{k x}{y^{3}} \quad 3=\frac{k(8)}{(2)^{3}} \quad 3=k$

$$
z=\frac{3 x}{y^{3}}
$$

$$
z=\frac{3(6)}{(4)^{3}}
$$

$$
\mathrm{z}=\frac{9}{32}
$$

Word Pooblems

1. The speed of the current in a whirlpool varies inversely with the distance from the whirlpool's center. The Lofoten Maelstrom is a whirlpool located off the coast of Norway. At a distance of 3000 meters from the center, the speed of the current is about 0.1 meters per second. a. Find the equation for this scenario.

$$
s=\frac{\mathrm{k}}{\mathrm{~d}} \quad \begin{array}{rrr}
0.1=\underline{k} \\
3000
\end{array} \quad 300=k
$$

$$
s=\frac{300}{d}
$$

b. What's the speed of the whirlpool when 50 meters from the center?

$$
s=\frac{300}{50}
$$

$$
\mathrm{s}=6 \text { meters } / \mathrm{sec}
$$

Word Problens You Tryy!

2. In building a brick wall, the amount of time it takes to complete the wall varies directly with the number of bricks in the wall and varies inversely with the number of bricklayers that are working together. A wall containing 1200 bricks, using 3 bricklayers, takes 18 hours to build. How long would it take to build a wall of 4500 bricks if 5 bricklayers worked on it?
$\mathrm{t}=\underline{\mathrm{k} \boldsymbol{b}}$ where $\mathrm{t}=$ time, $\mathrm{b}=$ \# bricks, $\mathrm{p}=$ \# people working
p

$$
\begin{array}{ll}
18=\frac{k(1200)}{3} & 0.045=k \\
t=\frac{0.045(4500)}{5} & t=40.5 \text { hours }
\end{array}
$$

Tonight's Homework Packet p. 13-15

Remember: Quiz Tomorrow!
We also have a lesson, so tonight *check HW online AND
*work the warm-up in the notes

