Unit 4 Day 2

Graphing Square and Cube Roots

<u>Warm Up</u>

1. Write down all the transformations of the graph of $y = x^2$.a. $y = (x + h)^2$ moves the graph of $y = x^2$ b. $y = (x - h)^2$ moves the graph of $y = x^2$ c. $y = (x)^2 + k$ moves the graph of $y = x^2$ d. $y = (x)^2 - k$ moves the graph of $y = x^2$

Graph each function then describe the transformations from the parent graph. 2) f(x) = |3x + 9| - 2 3) y = -|x| + 6 4) $f(x) = x^2 - 3$

5) Given $f(x) = x^2$ Evaluate f(x) + f(x+2) 6) Given $g(x) = x^2 + 2$ Evaluate g(x+3) - g(x)

Done Early? Complete Notes p. 6 🙂

Warm Up Answers

1. Write down all the transformations of the graph of $y = x^2$.a. $y = (x + h)^2$ moves the graph of $y = x^2$ b. $y = (x - h)^2$ moves the graph of $y = x^2$ c. $y = (x)^2 + k$ moves the graph of $y = x^2$ d. $y = (x)^2 - k$ moves the graph of $y = x^2$

Warm-up Answers Continued $4)f(x) = x^2 - 3$

Translated down 3 from parent y = x².

Warm-up Answers Continued

5) Given $f(x) = x^2$ Evaluate f(x) + f(x+2)

 $x^{2} + (x + 2)^{2}$ $x^{2} + (x^{2} + 4x + 4)$ $2x^{2} + 4x + 4$ 6) Given $g(x) = x^2 + 2$ Evaluate g(x+3) - g(x)

$$[(x + 3)^{2} + 2] - [x^{2} + 2]$$

$$[(x^{2} + 6x + 9) + 2] - [x^{2} + 2]$$

$$(x^{2} + 6x + 11) - (x^{2} + 2)$$

$$x^{2} + 6x + 11 - x^{2} - 2$$

$$6x + 11 - 2$$

$$6x + 9$$

Homework Answers

	13. $D:(-\infty,\infty); R:[0,\infty)$
1. E	14. $D: (-\infty, \infty); R: (-\infty, 0]$
2. C	$15.D:(-\infty,\infty); R:(-\infty,3]$
3. А 4 г	16. $D:(-\infty,\infty);; R:(-\infty,0]$
4. r 5 R	$17.D:(-\infty,\infty); R:[0,\infty)$
6. D	18. $D:(-\infty,\infty); R:(-\infty,2]$
	19. $D:(-\infty,\infty); R:[-4,\infty)$
	20. $D: (-\infty, \infty); R: [-3, \infty)$
	$21.D:(-\infty,\infty)R:(-\infty,0]$

(Graphs on next slides)

Homework Answers Graphs

Homework Answers Continued

Homework Answers Bottom Pg 1

$$10. y = |x + 2| + 1; D : (-\infty, \infty); R : [1, \infty)$$

$$11. y = |x - 4|; D : (-\infty, \infty); R : [0, \infty)$$

$$12. y = -|x - 1| + 3; D : (-\infty, \infty); R : (-\infty, 3]$$

$$13. y = -|x - \frac{1}{2}| - \frac{3}{2}; D : (-\infty, \infty); R : (-\infty, -\frac{3}{2}]$$

$$14. y = |x + 3| - 2; D : (-\infty, \infty); R : [-2, \infty)$$

$$15. y = -|x| + \frac{3}{5}; D : (-\infty, \infty); R : (-\infty, \frac{3}{5}]$$

Homework Answers Pg 2

16, y = |x + 2| + 1 17. y = |x| - 3 18. y = x + 2 19. y = -|x| + 2 20.y = -|x - 1| - 221. y = -|x + 2|

22. a.
$$y = \frac{5}{4}|x-6|$$

b. Yes!! x = 10, $y = \frac{5}{4}|10-6|; y = 5$
23. V of image (4, 2)
move right 3 and down 4 v(7, -2)
m = 1; $y = |x-7| - 2$

Homework Answers Bottom pg 2

24.) Given h(t) = 10^t
Evaluate h(t) if t = 3.5
h(3.5) = 10^{3.5}
h(3.5) = 3,162.277

25.) Given $f(x) = 3 + \sqrt{x}$ Evaluate f(25) = $f(25) = 3 + \sqrt{25}$ f(25) = 3 + 5f(25) = 8 **26.)**Given f(t) = $\sqrt[3]{x^t}$ Evaluate f(12)= f(12) = $\sqrt[3]{x^{12}}$ f(12) = x^4

27.) Given $g(x) = 2x^2 - 5$ Evaluate g(2x - 5) = $g(x) = 2(2x-5)^2 - 5$ $g(x) = 2(4x^2 - 20x + 25) - 5$ $g(x) = (8x^2 - 40x + 50) - 5$ $g(x) = 8x^2 - 40x + 45$

Homework

Packet p. 3-4 AND NOTES p. 6 (if not done yet) HOMEWORK

Graphing Square Root Functions

Let's turn to your notes bottom of p. 7

Graphing Square Root Functions This part not in notes...watch ③

$F(x) = x^{2}$		$f(x) = \sqrt{x}$	
×	f(x)	×	f(x)
0	0	0	0
1	1	1	1
2	4	2	1.41
3	9	3	1.73
4	16	4	2
5	25	5	2.24
6	36	6	2.45
7	49	7	2.65
8	64	8	2.83
9	81	9	3

Reflect the function $f(x) = x^2$ over the line y = x.

Graphing Discovery On Calc (You Try)

Notes p. 8 #1-4

4. What happens when the 2 is under the radical? What happens when it is not?

When have we seen this before?

- With other functions and transformations we've studied

Graphing Cube Root Functions

f(x) = x ³		f(x)	$f(x) = \sqrt[3]{x}$	
×	f(x)	×	f(x)	
-8	-512	-8	-2	
-6	-216	-6	-1.82	
-4	-64	-4	-1.59	
-2	-8	-2	-1.26	
-1	-1	-1	-1	
0	0	0	0	
1	1	1	1	
2	8	2	1.26	
4	64	4	1.59	
6	216	6	1.82	
8	512	8	2	

Is this a function?? Yes!

The result: $f(x) = \sqrt[3]{x}$

Characteristics of the graph

As x goes to negative infinity, y goes to negative infinity. As x approaches infinity, y approaches infinity.

Symmetry About the origin (rotation)

Increasing when x > 0Decreasing when x < 0

Graphing Discovery On Calc (You Try)

Notes p. 9 #5-7

Graph by Hand using what we know now.

We know it is the square root function translated left 2 and down 4

$$8. \ y = \sqrt{x+2} - 4$$

Graphing by hand Notes p. 9 #9-10

For #10 try to make a table to help with graphing...

Domain:

Range:

Domain:

Range:

Any questions on those problems? 9. $y = \sqrt[3]{x-4+6}$ 10. $y = -2 \cdot \sqrt[3]{x+1} + 3$

Domain: $(-\infty, \infty)$ (All real #s)

Range: $(-\infty, \infty)$ (All real #s)

Translate right 4, up 6

Domain: $(-\infty,\infty)$ (All real #s)

Range: $(-\infty, \infty)$ (All real #s)

Reflection over x-axis, vertical

stretch by 2, left 1 and up 3 27

Sometimes the function isn't in a nice graphing form.

Hint: First change the following into the $y = a\sqrt{x-h}$ form.

You Try: Put the following in graphing form. Then graph it.

12.
$$f(x) = \sqrt[3]{8x+32} - 5$$

(This is not graphing form)

$$y = \sqrt[3]{8(x+4)} - 5$$
$$y = 2\sqrt[3]{x+4} - 5$$

Extra Practice!

1) Given $f(x) = 3x - 2x^2$ Evaluate f(2x + 2) - f(x)

- 2) Given $g(x) = 2x^2 + 4$ Evaluate g(x - 1) + g(3)
 - $2x^2 4x + 28$

 $-6x^2 - 13x - 2$

Homework/Classwork

- Quietly work on Packet p. 3-4
- AND NOTES p. 6 (if not done yet)