Unit 4 Day 1

Absolute Value Functions

Warm-up: \#1,2,3 on top of notes p. 1

1) Write down all the transformations of the graph of $y=x^{2}$.
a. $y=(x+h)^{2} \quad$ moves the graph of $y=x^{2}$

Left h
b. $y=(x-h)^{2} \quad$ moves the graph of $y=x^{2}$

Right h
c. $y=(x)^{2}+k \quad$ moves the graph of $y=x^{2}$ Up k
d. $y=(x)^{2}-k \quad$ moves the graph of $y=x^{2}$ Down k

Graph each function. Be as accurate as you can. Remember to graph at least 5 points. Then indicate the transformations from the parent graph.
2) $y=(x+2)^{2}-3$
3) $y=-x^{2}+3$
4.) Given $f(x)=5 x \quad 10$

Evaluate $f(8)=$
5.) Given $f(x)=x^{2}+5$ Evaluate $f(x-3)=$

Graph each function. Be as accurate as you can. Remember to graph at least 5 points.
2) $y=(x+2)^{2}-3$

Graph each function. Be as accurate as you can. Remember to graph at least 5 points. 3) $y=-x^{2}+3$

4.) Given $f(x)=5 x \quad 10$

Evaluate $f(8)=30$

$$
\begin{aligned}
& f(8)=5(8)-10 \\
& f(8)=40-10 \\
& f(8)=30
\end{aligned}
$$

5.) Given $f(x)=x^{2}+5$

Evaluate $f(x-3)=x^{2}-6 x+14$

$$
\begin{aligned}
& f(x-3)=(x-3)^{2}+5 \\
& f(x-3)=x^{2}-6 x+9+5 \\
& f(x-3)=x^{2}-6 x+14
\end{aligned}
$$

Classwork / Homework

HW Packet p. 1, 2

If you can't print, have a parent email me! You REALLY need the notes and packet for each day - especially in this unit - there are a LOT of graphs!

Unit 4 Day 1

Absolute Value Functions

Graphing Absolute Value

Notes p. 1

A function of the form $f(x)=|m x+b|+c$, where $m \neq 0$ is an absolute value function.

Let's play in our calculator with graphing absolute value functions. Graph the following in your calculator, use the list function to plot points and sketch the graph.

$$
|x|= \begin{cases}\frac{-x}{x}, & \text { if } x<0 \\ =, & \text { if } x=0 \\ x, & \text { if } x>0\end{cases}
$$

$\begin{gathered}\text { Let's do } \\ \text { \#1 } \\ \text { together! }\end{gathered}$

1. $y=|x|$

Graphing DisCovery

Notes p. 2 \#2-10

Discovery \#7-10

7. What is a zero of a function? Where are the zeros on each of the above graphs? A zero is the x-intercept, where the graph hits the x-axis. The zeros for each graph are at the vertex.
8. Where is the vertex of each graph?
9. $y=|x|(0,0)$

$$
\begin{equation*}
\text { 4. } y=|x-2| \tag{2,0}
\end{equation*}
$$

2. 2. $y=2|x+4| \quad(-4,0)$

$$
\text { 5. } y=2|x-3| \quad(3,0)
$$

3. $y=2|x+1.5| \quad(-1.5,0)$
4. $y=-3|x+2| \quad(-2,0)$
5. Using the pattern, what is the vertex of $y=a|x-h|$?

$$
(h, 0)
$$

10. How does "a" affect the graph?
"a" affects the slope of each side

Expressing Domain and Range with Interval Notation

Infinite Intervals
$\left.\begin{array}{cccc}\begin{array}{c}\text { Interval } \\ \text { Notation }\end{array} & \begin{array}{c}\text { Set } \\ \text { Notation }\end{array} & \text { Graph }\end{array}\right)$

Express the values of x in interval notation.

1) $x \geq 5 \quad[5, \infty)$
2) x is all real numbers $(-\infty, \infty)$
3) $-1<x \leq 8 \quad(-1,8]$
4) $x \leq-3$ or $x>6 \quad(-\infty,-3] \cup(6, \infty)$

Example: Graph $y=3|x+4|$ without your calculator

Step 1: Identify the vertex.

Step 2: Make a table of values (be sure that the x value from step 1 and values around tha x-value are included:

\mathbf{x}	-8	-6	-4	-2	0	2
\mathbf{y}	12	6	0	6	12	18

Step 3: Graph the function using the table
Domain: $\quad(-\infty, \infty)$
Range: $[0, \infty)$

Example: The graph at the right models a car traveling at a constant speed.
a. Describe the relation shown in the graph. Miles from the roadside stand increase as hours from the roadside stand increase
b. Which equation best represents the relation?

$$
\begin{aligned}
& \text { a. } y=|60 x| \\
& \text { b. } y=|x+60| \\
& \text { c. } y=|60-x| \\
& \text { d. } y=|x|+60
\end{aligned}
$$

Complete Graphing Discovery

Notes p. 4

Done early? Try top of Notes p. 5

Sketch each graph and find the domain and range in interval notation

$$
\text { Done early? Try top of Notes p. } 5
$$

$$
\begin{aligned}
& \text { 1. } y=|x| \quad \text { 2. } y=|x|+4 \text { 3. } y=|x|-3 \\
& \text { 5. } \mathrm{y}=|\mathrm{x}| \quad \text { 6. } \mathrm{y}=|\mathrm{x}+4| \text { 7. } \mathrm{y}=|\mathrm{x}-3|+4
\end{aligned}
$$

Identify the transformations. Also determine the domain and range for each function.

1. $y=3|x+2|-3$

Translated left 2, down 3, vertical stretch by 3
$D:(-\infty, \infty)$ R: $[-3, \infty)$
2. $y=|x-1|+2$

Translated right 1, up 2
D: $(-\infty, \infty)$ R; $[2, \infty)$
3. $y=2|x+3|-1$

Translated left 3, down 1, vertical stretch by 2
$D:(-\infty, \infty)$ R: $[-1, \infty)$

Transformations

Reflect over x-axis	\qquad If a>1 vertical stretch	Moves up (+) or down (-)
		Moves
	If $\mathrm{a}<1$ vertical compression	left (+) or right (-)
Remember that (h, k) is your vertex		

4. $y=-1 / 3|x-2|+1$

Translated left 2, down 3,
vertical compression by 1/3
$D:(-\infty, \infty) R:(-\infty, 1]$

Using Vertex Form

What can we do if an equation is not in vertex form?

$$
y=|3 x+6|-4
$$

What would the slope of the right side be?

$$
3
$$

We'll use that as our GCF. Factor it out, then we can have vertex form! ©

$$
y=3|x+2|-4
$$

What is our vertex?

$$
(-2,-4)
$$

What is the domain?
all real numbers

How is it transformed from the parent?
Translated left 2, down 4 and stretched vertically by 3

What is the range?

$$
[-4, \infty)
$$

Practice: Absolute Value Graphs \& Transformations

Notes p. 6

Use COLORED PENCILS or MARKERS :

Classwork / Homework

$$
\begin{aligned}
& \text { HW Packet p. 1, } 2 \\
& \text { Try p. } 1 \text { \#13-21 odd first! }
\end{aligned}
$$

You can graph with your calculator Use the table to plot points

