Day 1 Homework: Properties of Exponents

Part 1: Simplify. Your answer should contain only positive exponents.

1) $2 m^{2} \cdot 2 m^{3}$
2) $m^{4} \cdot 2 m^{-3}$
3) $4 r^{-3} \cdot 2 r^{2}$
4) $4 n^{4} \cdot 2 n^{-3}$
5) $2 k^{4} \cdot 4 k$
6) $2 x^{3} y^{-3} \cdot 2 x^{-1} y^{3}$
7) $2 y^{2} \cdot 3 x$
8) $4 v^{3} \cdot v u^{2}$
9) $4 a^{3} b^{2} \cdot 3 a^{-4} b^{-3}$
10) $x^{2} y^{-4} \cdot x^{3} y^{2}$
11) $\left(x^{2}\right)^{0}$
12) $\left(2 x^{2}\right)^{-4}$
13) $\left(4 r^{0}\right)^{4}$
14) $\left(4 a^{3}\right)^{2}$
15) $\left(3 k^{4}\right)^{4}$
16) $(4 x y)^{-1}$

Part 2: Simplify each expression.

1) $\left(x^{-2} x^{-3}\right)^{4}$
2) $\left(x^{4}\right)^{-3} \cdot 2 x^{4}$
3) $\left(n^{3}\right)^{3} \cdot 2 n^{-1}$
4) $(2 v)^{2} \cdot 2 v^{2}$
5) $\frac{2 x^{2} y^{4} \cdot 4 x^{2} y^{4} \cdot 3 x}{3 x^{-3} y^{2}}$
6) $\frac{2 y^{3} \cdot 3 x y^{3}}{3 x^{2} y^{4}}$
7) $\frac{x^{3} y^{3} \cdot x^{3}}{4 x^{2}}$
8) $\frac{3 x^{2} y^{2}}{2 x^{-1} \cdot 4 y x^{2}}$
9) $\frac{x}{\left(2 x^{0}\right)^{2}}$
10) $\frac{2 m^{-4}}{\left(2 m^{-4}\right)^{3}}$

Simplify each expression.
11) $5 x \sqrt{99 y^{2}}+2 y \sqrt{44 x^{2}}$
12) $14 x y \sqrt{128 x^{3}}-17 \sqrt{128 x^{5} y^{2}}$
13) $23 \sqrt[3]{48 x^{3} y^{3}}+10 x y \sqrt[3]{6}$
14) $\sqrt[3]{2000 x y^{4}}-4 y \sqrt[3]{54 x y}$

Day 2 Homework

7) $\sqrt[5]{224 r^{7}}$
8) $\sqrt[3]{24 m^{3}}$
9) $\sqrt{392 x^{2}}$
10) $\sqrt{512 x^{2}}$
11) $\sqrt[4]{405 x^{3} y^{2}}$
12) $\sqrt[3]{-16 a^{3} b^{8}}$
13) $\sqrt[4]{128 x^{7} y^{7}}$
14) $\sqrt[3]{16 x y}$
15) $\sqrt[6]{448 x^{7} y^{7}}$
16) $\sqrt[3]{56 x^{5} y}$
I. Find the value of x in each of the following expressions.

$4^{x} \cdot 4^{3}=4^{8}$	$\left(3^{x}\right)^{1 / 4}=3$	$4^{2 / 3} \cdot 4^{x}=4$
$\left(3^{2}\right)^{x}=3^{14}$	$\left(2^{-3}\right)^{x}=\frac{1}{2^{12}}$	$\frac{5^{2 / 3}}{5^{x}}=5$
$\frac{4^{3}}{4^{x}}=1$	$\frac{3^{x}}{3^{12}}=\frac{1}{3^{2}}$	$5^{8} 5^{x}=1$
$\left(3^{x} \cdot 7^{5}\right)^{4}=3^{20} 7^{y}$	$\left(\frac{3^{7}}{4^{x}}\right)^{-2}=\frac{4^{10}}{3^{y}}$	$\left(5^{x} 4^{3}\right)^{2}=4^{y}$

Simplify each expression.

$9 \sqrt{3}+2 \sqrt{3}$	$5 \sqrt{2}+2 \sqrt{3}$	$3 \sqrt{7}-7 \sqrt[3]{7}$
$3 \sqrt{32}+2 \sqrt{50}$		
$4 \sqrt[3]{81}-3 \sqrt[3]{72}-3 \sqrt[3]{24}$		$14 \sqrt[3]{x y}-3 \sqrt[3]{x y}$

2) A garden has width $\sqrt{13}$ and length $7 \sqrt{13}$. What is the perimeter of the garden in simplest radical form?

Day 3 Homework

Write each expression in radical form.

1) $7^{\frac{1}{2}}$
2) $4^{\frac{4}{3}}$
3) $2^{\frac{5}{3}}$
4) $7^{\frac{4}{3}}$
5) $6^{\frac{3}{2}}$
6) $2^{\frac{1}{6}}$

Write each expression in exponential form.
7) $(\sqrt{10})^{3}$
8) $\sqrt[6]{2}$
9) $(\sqrt[4]{2})^{5}$
10) $(\sqrt[4]{5})^{5}$
11) $\sqrt[3]{2}$
12) $\sqrt[6]{10}$

Unit 3 Packet

Write each expression in radical form.
13) $(5 x)^{-\frac{5}{4}}$
14) $(5 x)^{-\frac{1}{2}}$
15) $(10 n)^{\frac{3}{2}}$
16) $a^{\frac{6}{5}}$

Write each expression in exponential form.
19) $(\sqrt[4]{m})^{3}$
20) $(\sqrt[3]{6 x})^{4}$
21) $\sqrt[4]{v}$
22) $\sqrt{6 p}$

Simplify.
25) $9^{\frac{1}{2}}$
26) $343^{-\frac{4}{3}}$
27) $1000000^{\frac{1}{6}}$
28) $36^{\frac{3}{2}}$
29) $\left(x^{6}\right)^{\frac{1}{2}}$
30) $\left(9 n^{4}\right)^{\frac{1}{2}}$

Part 1. Solve each equation.

1) $27=x^{\frac{3}{2}}$
2) $m^{\frac{3}{4}}=27$
3) $x^{-\frac{3}{2}}=\frac{1}{729}$
4) $7=r^{\frac{1}{2}}$
5) $v^{\frac{5}{4}}=243$
6) $n^{\frac{3}{2}}=125$

Part 2. Solve each equation. Remember to check for extraneous solutions.

1) $\sqrt{110-n}=n$
2) $p=\sqrt{2-p}$
3) $\sqrt{30-x}=x$
4) $x=\sqrt{8 x}$
5) $x=\sqrt{42-x}$
6) $\sqrt{12-r}=r$

Day 5 Homework- Quiz Review

Simplify. Leave your answer in simplest radical form.

1. $\sqrt[3]{x^{16} y^{4}}$
2. $27^{2 / 3}$
3. $\sqrt[4]{81 x^{7} y^{2}}$
4. $216^{-1 / 3}$
5. $5 x \sqrt[3]{32 x^{8}}$
6. $\sqrt[6]{25}$
7. $\left(\sqrt[4]{2 x^{3}}\right)\left(\sqrt[4]{16 x^{3}}\right)$
8. $\sqrt[6]{125}$
9. $\sqrt[4]{x^{16} y^{18}}$
10. $(\sqrt[3]{x})(\sqrt{x})$
11. $\sqrt[15]{x^{5} y^{10}}$
12. $\left(\sqrt[4]{x^{3}}\right)(\sqrt{3 x})$
13. $\sqrt[6]{x^{4} y^{2}}$
14. $\sqrt[4]{2 x^{2}}\left(\sqrt[4]{8 x^{3}}+\sqrt[4]{x}\right)$
15. $\sqrt[3]{54 x^{7} y}$
16. $\sqrt[3]{x}\left(\sqrt[3]{81 x^{2}}-\sqrt[3]{18 x}\right)$
17. $\left(\sqrt[5]{x^{3}}-1\right)\left(\sqrt[5]{x^{3}}+1\right)$
18. $\left(\sqrt[5]{25 x^{4}}\right)\left(\sqrt[5]{125 x^{3}}\right)$
19. $(\sqrt[3]{2 x}+1)(\sqrt[3]{2 x}-1)$
20. $32^{2 / 5}$
21. $\left(\frac{16}{625}\right)^{1 / 4}$
22. $\left(\sqrt[4]{a^{3}}\right)\left(\sqrt[4]{a^{3}}\right)$
23. $81^{-1 / 4}$

Unit 3 Packet

Solve
25. $b=\sqrt{-4+4 b}$
26. $r=\sqrt{8 r}$
27. $\sqrt{-16+10 a}=a$
28. $r=\sqrt{-1-2 r}$
29. $5=\sqrt{r-3}$
30. $\sqrt{2 m-6}=\sqrt{3 m-14}$
31. $(20-r)^{\frac{1}{2}}=r$
33. $9+5 \sqrt[3]{2 m}=29$
32. $(6 b)^{\frac{1}{2}}=(8-2 b)^{\frac{1}{2}}$
34. $-x^{\frac{3}{2}}=-27$

Solving Radical Equations

1.) $4 x^{3 / 2}-5=103$	2.) $\sqrt{x}+6=x$
3.) $(7 x-3)^{1 / 2}=5$	4.) $\sqrt{x-3}-\sqrt{x}=3$
5.) $5 \sqrt{x}+2=12$	6.) $\sqrt[3]{2 x-4}=-2$
7.) $3(2 x+4)^{4 / 3}=48$	

9.) $\sqrt{7 x-6}-\sqrt{5 x+2}=0$	10. $)(x-2)^{2 / 3}-4=5$
11.) $\sqrt[3]{2 x+1}=\sqrt[3]{8}$	12.) $\sqrt{12 x+13}=2 x+1$
13.) $2(x+1)^{3 / 2}=54$	14.) $\sqrt[5]{3-x}+4=3$

15.) The velocity of a free-falling object is given by $V=\sqrt{2 g h}$ where h is the distance in feet the object has fallen and g is acceleration due to gravity in feet per second squared. The value of g depends on your altitude. If an object hits the ground with a velocity of 25 feet per second, from what height was it dropped in each of the following situations?
a.) You are standing on earth, so $g=32 \mathrm{ft} / \mathrm{s}^{2}$.
b.) You are on a space shuttle, so $g=29 \mathrm{ft} / \mathrm{s}^{2}$.
c.) You are on the moon, so $g=0.009 \mathrm{ft} / \mathrm{s}^{2}$.

Day 7 Homework

1POPULATION

In 1990, Florida's population was about 13 million. Since1990, the state's population has grown about 1.7% each year. This means that Florida's population is growing exponentially.

Year	Population
1990	
1991	
1992	
1993	
1994	

a) Write an explicit function in the form $\boldsymbol{y}=\boldsymbol{a}^{\mathbf{x}}$ that models the values in the table.
b) What does x represent in your function?
c) What is the "a" value in the equation and what does it represent in this context?
d) What is the "b" value in the equation and what does it represent in this context?

2 HEALTHCARE

Since 1985, the daily cost of patient care in community hospitals in the United States has increased about 8.1% per year. In 1985, such hospital costs were an average of $\$ 460$ per day.
a) Write an equation to model the cost of hospital care. Let $x=$ the number of years after 1985.
b) Find the approximate cost per day in 2012.
c) When was the cost per day $\$ 1000$?
d) When was the cost per day $\$ 2000$?

3HALF-LIFE

To treat some forms of cancer, doctors use lodine-131 which has a half-life of 8 days. If a patient received 12 millicuries of lodine-131, how much of the substance will remain in the patient 2 weeks later?

4 SAVINGS

Suppose your parents deposited $\$ 1500$ in an account paying 6.5% interest compounded annually when you were born.
a) Find the account balance after 18 years.
b) When could you expect your account balance to double?
c) What would be the difference in the balance after 18 years if the interest rate in the original problem was 8% instead of 6.5% ?
d) What would be the difference in the balance if the interest was 6.5% and was compounded monthly instead of annually.

5 HEALTH

Since 1980, the number of gallons of whole milk each person in the US drinks in a year has decreased 4.1% each year. In 1980, each person drank an average of 16.5 gallons of whole milk per year.

Year	Gallons
1980	
1981	
1982	
1983	
1984	

a) Write a recursive function for the data in the table.

c) According to this same trend, how many gallons of milk did a person drink in a year in 1970?

6 WASHINGTON, D.C.

The model $\mathrm{y}=604000(0.982)^{\mathrm{x}}$ represents the population in Washington, D.C., x years after 1990.
a) How many people were there in 1990?

b) What percentage growth or decay does this model imply?
c) Write a recursive function to represent the same model as the provided explicit function.
d) Suppose the current trend continues, predict the number of people in DC in 2013.
e) Suppose the current trend continues, in what year will the population of DC be approximately half what it was in 1990?

