Unit 3 Day 2

Simplifying Radicals

Basic Radical Operations

Day 2 Warm Up

Warm-up in the Notes

$$
\begin{aligned}
& a^{m} \cdot a^{n}=\square \frac{a^{m}}{a^{n}}=-\frac{1}{a^{n}}= \\
& \left(a^{m}\right)^{n}=\quad(a \cdot b)^{n}= \\
& \text { 1. } \sqrt{98}= \\
& \text { 2. } \sqrt{108}= \\
& \text { 3. } 3 \sqrt{2} \cdot 4 \sqrt{3}= \\
& \text { 4. }-\sqrt{8} \cdot 3 \sqrt{2}= \\
& \text { 5. } 4 \sqrt{6}+3 \sqrt{6}= \\
& \text { 6. } \sqrt{8}+\sqrt{18}= \\
& \text { 7. } 3 \sqrt{2}-2 \sqrt{2}= \\
& \text { 8. } \sqrt{48}-\sqrt{27}= \\
& \text { Done early? } \\
& \text { Complete Top } \\
& \begin{array}{c}
\text { of Notes pg. } 3 \\
\&
\end{array} \\
& \text { Bottom of } \\
& \text { Notes pg. } 2 \\
& \text { (if not done } \\
& \text { yet) }
\end{aligned}
$$

Day 2 Warm Up ANSWERS

Warm-up in the Notes
(Properties of Exponents...today we'll do them with FRACTIONS!)
Even though they seem more complicated, fractions are numbers too. You can use all the same properties with fraction (rational) exponents as you can with integer exponents. Write down those properties first.

$$
\left(a^{m}\right)^{n}=\underline{a^{m n}} \quad(a \cdot b)^{n}=\underline{a^{n} b^{n}}
$$

Day 2 Warm Up ANSWERS

A 1. $\sqrt{98}=$
G 2. $\sqrt{108}=$
F 3. $3 \sqrt{2} \cdot 4 \sqrt{3}=$
D 4. $-\sqrt{8} \cdot 3 \sqrt{2}=$
I 5. $4 \sqrt{6}+3 \sqrt{6}=$
C 6. $\sqrt{8}+\sqrt{18}=$
E 7. $3 \sqrt{2}-2 \sqrt{2}=$
H 8. $\sqrt{48}-\sqrt{27}=$

A	$7 \sqrt{2}$
B	$4 \sqrt{2}$
C	$5 \sqrt{2}$
D	-12
E	$\sqrt{2}$
F	$12 \sqrt{6}$
G	$6 \sqrt{3}$
H	$\sqrt{3}$
I	$7 \sqrt{6}$

Homework Answers

1) $2 m^{2} \cdot 2 m^{3}$
$4 m^{5}$
2) $\begin{gathered}4 r^{-3} \cdot 2 r^{2} \\ \frac{8}{r}\end{gathered}$
3) $2 k^{4} \cdot 4 k$ $8 \mathrm{k}^{5}$
4) $2 y^{2} \cdot 3 x$
$6 x y^{2}$
5) $m^{4} \cdot 2 m^{-3}$

2 m
4) $4 n^{4} \cdot 2 n^{-3}$ $8 n$
6) $2 x^{3} y^{-3} \cdot 2 x^{-1} y^{3}$
$4 \mathrm{X}^{2}$
8) $4 v^{3} \cdot v u^{2}$
$4 u^{2} v^{4}$

Homework Answers

9) $4 a^{3} b^{2} \cdot 3 a^{-4} b^{-3}$
$\frac{12}{a b}$
10) $x^{2} y_{5}^{-4} \cdot x^{3} y^{2}$
11) $\left(x^{2}\right)^{0}$
1
12) $\left(2 x^{2}\right)^{-4}$
$\frac{1}{16 x^{8}}$
13) $\left(4 r^{0}\right)^{4}$
256
14) $\left(4 a^{3}\right)^{2}$
$16 a^{6}$
15) $\left(3 k^{4}\right)^{4}$
$81 k^{16}$

Packetpg. 2 Homework Answers

1) $\left(x^{-2} x^{-3}\right)^{4}$
2) $\left(x^{4}\right)^{-3} \cdot 2 x^{4}$

$$
\frac{1}{X^{20}}
$$

4) $(2 v)^{2} \cdot 2 v^{2}$
$2 n^{8}$
$8 v^{4}$
5) $\frac{2 x^{2} y^{4} \cdot 4 x^{2} y^{4} \cdot 3 x}{3 x^{-3} y^{2}}$
6) $\frac{2 y^{3} \cdot 3 x y^{3}}{3 x^{2} y^{4}}$
$8 x^{8} y^{6}$

$$
\frac{2 y^{2}}{x}
$$

Homework Answers

9) $\frac{x}{\left(2 x^{0}\right)^{2}}$
$\frac{X}{4}$

$$
\begin{aligned}
& \text { 8) } \frac{3 x^{2} y^{2}}{2 x^{1} \cdot 4 y y^{2}} \\
& \frac{3 x y}{8}
\end{aligned}
$$

10) $\frac{2 m^{-4}}{\left(2 m^{-4}\right)^{3}}$
$\frac{m^{8}}{4}$

Tonight's Homework: Packet p. 3 and 4

Elements of a Radical

$\sqrt[3]{64}=$?
Radicand $=64$
Index= 3
Root is 4
because $\underline{4} \cdot \underline{4} \cdot \underline{4}=\underline{4}^{3}=64$

On the Calculator

Reminder: To use your calculator:
Step 1: Type in the index.
Step 2: Press MATH
Step 3: Choose 5: $\sqrt[x]{\ldots}$
Step 4: Type in the radicand.
$\sqrt[3]{343}=7$

You Try!

$\sqrt[5]{243 y^{5}}$
$\sqrt[4]{1296 m^{4} n^{8}}$
$\sqrt{144 v^{8}}$
$3 y$
$6 \mathrm{mn}^{2}$
$12 v^{4}$

Simplifying Radicals

But not every problem will work out that nicely! Try using your calculator to find an exact answer for $\sqrt[3]{24}$
$\sqrt{12}=2 \sqrt{3}$

$$
\sqrt[3]{24}=2 \sqrt[3]{3}
$$

$$
\sqrt[4]{48}=2 \sqrt[4]{3}
$$

Simplifying Radicals: 1) Breakdown the radicand using a factor tree
2) Find a group of \#s (same group size as index) to pull out
3) Always check that radicand is fully simplified!

Negative Inside of the radical?

If you have an even root \rightarrow The negative means an imaginary number

If you have an odd root \rightarrow The negative CAN stay FROM the radicand TO the coefficient...
Does not mean an imaginary number
Let's look at some examples!
$t=$ you try
Examples：

$\sqrt{16 x^{2}}$	$\sqrt{8 x}$＊	$\sqrt{15 x^{3}}$ 大
$\sqrt[3]{-8}$	$\sqrt[3]{80 n^{5}} \quad t$	$\sqrt[4]{96}$ 大
$\sqrt[4]{81}$	$\sqrt[5]{486}$ 大	$\sqrt[3]{-40}$ 大
$\sqrt[3]{18 x^{4}}$	$\sqrt[4]{64 x^{3}} \quad \lambda$	$\sqrt[5]{-32 x^{3} y^{6}}$ औ
$\sqrt[3]{81 x^{3} y^{2} z^{4}}$	$\sqrt[3]{192 x^{5} y^{7} z^{2}}$	$\sqrt[4]{1875 x^{4} z^{2}} \quad$ ¢

$t=$ you try
Examples:

Multiplying Radicals

Make sure the index is the same!!

1. Multiply the coefficients.
2. Multiply the radicands.
3. Simplify!!
$\star=$ you try $:$

$2 \sqrt{3} \cdot 5 \sqrt{2}$	$-3 \sqrt{8} \cdot \sqrt{2}$,	$4 \sqrt{5} \cdot 3 \sqrt{10}$ ¢
$\sqrt{3 x^{2} y} \cdot \sqrt{5 x y}$	$6 \sqrt{8 x^{3} y^{2}} \cdot \sqrt{10 x y^{3}}$ त	$-\sqrt{5 x^{4} y^{3}} \cdot \sqrt{15 x^{2} y^{5}}$ ¢
$\sqrt{\sqrt[3]{4 x^{2}} \cdot 5 \sqrt[3]{8 x y}}$	$\sqrt[4]{2 x^{5}} \cdot \sqrt[4]{40 x^{3} y^{3}}$	$4 \sqrt[5]{27 x^{3}} \cdot \sqrt[5]{9 x^{3} y^{5}}$ त
$3 \sqrt[3]{5 x^{3}} \cdot 2 \sqrt[3]{50 y}$	$\sqrt[3]{9} \cdot \sqrt[3]{-24}$	$\sqrt[4]{8} \cdot \sqrt[4]{32}$

$\hbar=$ you try \odot

Adding and Subtracting Radicals

Just like Combining "like" Terms.
$2 x-x+4 x=$ \qquad
$3 y-2 x+y-6 y=$
Some tips:
-You are now combining "like" radical expressions instead.
-Add/Subtract only when the radicals have the same
index and radicand.
-When you add/subtract, you add the coefficients. The radicands do not change.
-Always SIMPLIFY FIRST.

Examples:

$\star=$ you try $;$

$3 \sqrt{3}+4 \sqrt{3}$	$\sqrt{5}+2 \sqrt{5}+3 \sqrt{5}$ k	4 $\sqrt{12}-\sqrt{75}$ 大
$\sqrt{45 x^{3}}-\sqrt{20 x^{3}}$	$5 \sqrt[3]{32}-2 \sqrt[3]{108}$	$3 \sqrt[3]{16}+\sqrt[3]{54}$
$2 \sqrt[3]{125 a^{4}}-5 \sqrt[3]{8 a}$	$9 \sqrt[3]{40 a}-7 \sqrt[3]{135 a}$	$5 \sqrt[3]{16 y^{4}}+7 \sqrt{2 y}$, त
$6 \sqrt{18}+3 \sqrt{50}$	$\sqrt[3]{54}+\sqrt[3]{16}$	$\sqrt[4]{32}+\sqrt[4]{48}$

$t=$ you try

$\begin{array}{r} 3 \sqrt{3}+4 \sqrt{3} \\ 7 \sqrt{3} \end{array}$	$\begin{array}{r} \sqrt{5}+2 \sqrt{5}+3 \sqrt{5} \\ 6 \sqrt{5} \end{array}$	$\left\lvert\, \begin{array}{r} 4 \sqrt{12}-\sqrt{15} \\ 3 \sqrt{3} \end{array}\right.$
$\begin{array}{r} \sqrt{45 x^{3}}-\sqrt{20 x^{3}} \\ x \sqrt{5 x} \end{array}$	$4_{5 \sqrt[3]{32}-2 \sqrt[3]{108}}^{\star}{ }^{\star}$	$9 \sqrt[3]{2}$
$\begin{aligned} & 2 \sqrt[3]{125 a^{4}}-5 \sqrt[3]{8 a} \\ & 10 a \sqrt[3]{a}-10 \sqrt[3]{a} \end{aligned}$	$\begin{array}{r} 9 \sqrt[3]{40 a}-7 \sqrt[3]{135 a} \\ -3 \sqrt[3]{5 a} \end{array}$	$\begin{aligned} & 5 \sqrt[5]{16 y^{4}}+7 \sqrt[3]{\sqrt{y}} \\ & 10 y \sqrt[3]{2 y}+7 \sqrt[3]{2 y} \end{aligned}$
$\begin{array}{r} 6 \sqrt{18}+3 \sqrt{50} \\ 33 \sqrt{2} \end{array}$	$\sqrt[3]{54}+\sqrt[3]{16}$ $5 \sqrt[3]{2}$	$\begin{gathered} \sqrt[4]{32}+\sqrt[4]{48} \\ 2 \sqrt[4]{2}+2 \sqrt[4]{3} \end{gathered}$

Tonight's Homework: Packet p. 3 and 4

