## Unit 3 Day 12

## Common Logs and <br> Applications

## Warm Up Day 12

## 1. Key Features of Logarithmic Functions

Graph the following function. Identify the domain, range, asymptotes, and transformations of the parent function $y=\log (x)$.

$$
y=\log _{10}(4 x-11)-2
$$

Domain:

$$
x>2.75
$$

(or 11/4)
$(2.75, \infty)$


Range: All Real \#s $(-\infty, \infty)$
Asymptote: $x=2.75$
Description of transformations:

## Right 2.75 and down 2

2. Convert to exponential form then evaluate.
a) $\log _{2} 16$
b) $\log 10000$

4
3. Solve.
a) $10^{x}=1000$
$2 \quad x=3$
b) $10^{x-2}=10000$
$x=6$

## Tonight's Homework

> Packet p. 22-23 and Finish Notes p. $38-39$


## Homework Answers from Day 11 material Packet p. 17-18 All

1. a) Translated 2 units right.
b) Translated 3 units up.
c) Translated 2 units right and 3 units up.
2. Domain: $(2, \infty)$ Range : $(-\infty, \infty)$
$x$-intercept $(2.001,0)$ Vertical Asymptote: $x=2$
3. a) Reflected over the x-axis.
b) Translated 2 units right.
c) Reflected over the $x$-axis and translated 2 units right.
4. Domain: $(2, \infty)$ Range: $(-\infty, \infty)$
$x$-intercept $(2,0) \quad$ Vertical Asymptote $x=2$

## Homework Answers from Day 11 material

5. a) Reflected over the $y$-axis.
b) Translated 2 units up.
c) Reflected over the $y$-axis and translated 2 units up.
6. Domain: $(-\infty, 0)$ $x$-intercept: $(-0.01,0)$

Range: $(-\infty, \infty)$
Vert. Asymptote: $x=0$
7.
7. Graph $f(x)=-\log (-x)+1$.

Use the graphs below to show each transformation. Write the function of each step under each graph. (Hint: Look at graphs for \#1 and \#3)

$f(x)=\log (x)$

$f(x)=\log (-x)$

$f(x)=-10 g(-x)$

$f(x)=-\log (-x)+1$
\#7 Graph Scale: $x$-values increase by $10, y$ values increase by 1.

## Homework Answers

8. 


\#8 Graph Scale: x values increase by 10, y values increase by 1.

## Homework Answers for HW p. 19-20 Odds

$$
\begin{array}{ll}
\text { p. } 19 & \\
\text { 1. } x=15 / 2 & \text { 2. } x=\{-5,5\} \\
\text { 3. } x=-6 & \text { 4. } x=169 \\
\text { 5. } x=\{-5,6\} & \text { 6. } x=9 \\
\text { 7. } x=3 & \text { 8. } x=7 / 3
\end{array}
$$

| p. 20 | 2. $x=8$ |
| :--- | :--- |
| 1. $b=10$ | 4. $x=-4$ |
| 3. $a=-4$ | 6. $m=8$ |
| 5. $r=28$ | 8. $b=-1$ |
| 7. $k=\{0,8\}$ | 10. $k=4$ |

## Homework Answers for HW p. 21 Odds

| p. 21 |  |
| :--- | :--- |
| 11. $r=4$ | 12. $b=1$ |
| 13. $r=7$ | 14. $p=\{2,5\}$ |
| 15. $n=16$ | 16. $v=4$ |
| 17. $n=7$ | 18. $x=\{-1,-3\}$ |
| 9. $x=9$ | 10. $b=6$ |

## Investigation

## Notes p. 37-38

## Investigation \#2

Logarithms can be used to find exponents that solve equations like $10^{x}=9.5$. For this reason, they are an invaluable tool in answering questions about exponential growth and decay. For example, the world population is currently about 6.2 billion and growing exponentially at a rate of about 1.14\% per year. To find the time when this population is likely to double, you need to solve the equation

$$
6.2(1.0114)^{t}=12.4, \text { or }(1.0114)^{t}=2
$$

As you work on the problems of this investigation, look for ways to answer this question:

- How can common logarithms help in finding solutions of exponential equations?

Use number sense and what you already know about logarithms to solve these equations.
a. $10^{x}=1,000$

$$
x=3
$$

b. $10^{x+2}=1,000$

## Steps

1) Isolate the exponential part (where your variable is).
2) Take the log of both sides.
3) Use log power property
$\log _{\mathrm{a}} \mathrm{b}^{\mathrm{x}}=\mathrm{x} \log _{\mathrm{a}} \mathrm{b}$
4) Solve.

$$
x=1
$$

Use number sense and what you already know about logarithms to solve these equations.
c. $10^{3 x+2}=1,000$
d. $2(10)^{x}=200$

$$
x=1 / 3
$$

$$
x=2
$$

## $x^{\wedge}=$ You Try!

## ${ }^{\star}$ e. $3(10)^{x+4}=3,000$ <br> f. $10^{2 x}=50$

$x=-1$
g. $10^{3 x+2}=43$

$$
x=-.12
$$

*i. $3(10)^{x+4}+7=28$

$$
x=-3.15
$$

## Complete Applications \$ Practice p. 38-39

## Application \#2

2) If a scientist counts 50 bacteria in an experimental culture and observes that one hour later the count is up to 100 bacteria, the function $P(t)=50\left(10^{0.3 t}\right)$ provides an exponential growth model that matches these data points.
a. Explain how you can be sure that $\mathrm{P}(0)=50$. 50 is our initial value

$$
\text { AND } P(0)=50\left(10^{0.3^{*} 0}\right)=50\left(10^{0}\right)=50(1)=50
$$

b. Show that $\mathrm{P}(1) \approx 100$.

$$
P(1)=50\left(10^{0.3^{*} 1}\right) \approx 99.76 \approx 100
$$

c. Use the given function to estimate the time when the bacteria population would be expected to reach 1,000,000. Explain how to find this time in two ways - one by numerical or graphic estimation and the other by use of logarithms and algebraic reasoning.
$1,000,000=50\left(10^{0.3^{* t}}\right)$-> solve using logs $15 \quad t=14.34$ hours

## Application \#3

3) The world population in 2005 was 6.2 billion and growing exponentially at a rate of $1.14 \%$ per year. The function $\mathrm{P}(\mathrm{t})=6.2\left(10^{0.005 t}\right)$ provides a good model for the population growth pattern.
a. Explain how you can be sure that $\mathrm{P}(0)=6.2$

$$
\begin{aligned}
& 6.2 \text { is our initial value AND } \\
& P(0)=6.2\left(10^{0.005^{*}}\right)=6.2\left(10^{0}\right)=6.2(1)=6.2 \text { billion }
\end{aligned}
$$

b. Show that $P(1)=6.2+1.14 \%(6.2)$

$$
P(1)=6.2\left(10^{0.005^{*}}\right)=6.2\left(10^{0.005}\right) 10=6.27 \text { billion }
$$

c. Find the time when world population would be expected to reach 10 billion if growth continues at the same exponential rate. Explain how to find this time in two ways - one by numerical or graphic estimation and the other by use of logarithms and algebraic reasoning $\quad 10=6.2\left(10^{0.005 * t}\right)->$ solve using logs

## CHECK YOUR UNDERSTANDING:

Use logarithms and other algebraic methods as needed to complete the following tasks.
Solve these equations.

$$
\begin{array}{cc}
\text { I. } 5(10)^{\mathrm{x}}=450 & \text { II. } 4(10)^{2 \mathrm{x}}=40 \\
x=1.95 & x=\frac{1}{2} \\
\text { III. } 5(10)^{4 \mathrm{x}-2}=500 & \text { IV. } 8 \mathrm{x}^{2}+3=35 \\
x=1 & x= \pm 2
\end{array}
$$

Check Your Understanding p 39
I. $\frac{5(10)^{x}}{5}=\frac{450}{5} \frac{10^{x}=90}{\log 10^{x}=\log 90} \quad \frac{x \log 10}{\log 10} \frac{\log 90}{\log 10} \quad x=1.9542$
II. $\frac{4(10)^{2 x}}{4}=\frac{40}{4} \quad 10^{2 x}=10$
$10^{2 x}=10^{1}$
$o R$
$\frac{4(10)^{2 x}}{4}-\frac{40}{4}$
$(10)^{2 x}=10$ 2x三1
III. $\quad \frac{5(10)^{4 x-2}}{5}=\frac{500}{5}$ $x=1 / 0$
$4_{609}(10)^{2 x}=10960$

$$
10^{4 x-2}=100
$$

IV. $8 x^{2}+3=35$

$$
\begin{aligned}
& 8 x^{2}=32 \\
& \frac{8}{8} x^{2}=4
\end{aligned} \quad \sqrt{x^{2}-4}
$$

$$
\begin{aligned}
& 7 \log ^{10}{ }^{4-2}=\log 100 \\
& 4 \times-2 y 910=\frac{\log 100}{10 g 10} \\
& 4 x-2=\frac{10 g 100}{10}+2 \\
& \frac{4 x}{4}=\frac{\log 10}{410}+\frac{2}{4}
\end{aligned}
$$

b. The population of the United States in 2006 was about 300 million and growing exponentially at a rate of about $0.7 \%$ per year. If that growth rate continues, the population of the country in year $2006+t$ will be given by the function $\mathrm{P}(\mathrm{t})=300\left(10^{0.003 \mathrm{t}}\right)$. According to that population model, when is the U.S. population predicted to reach 400 million? Check the reasonableness of your answer with a table or a graph of $\mathrm{P}(\mathrm{t})$.

## $t=41.65$

$2006+41.65=2047.65$

In the Year 2047

## Review

Find the solution to each equation algebraically.

1) $\sqrt{20 x-6}=\sqrt{5 x+39}$

$$
\text { 2) } 2(x-2)^{2 / 3}-8=192
$$

3) $(x+7)^{1 / 2}-x=5$
4) Your new painting is valued at $\$ 2400$. It's value depreciates $7 \%$ each year. The value is a function of time.
a) Write a recursive (next-now) equation for the situation
b) Write an explicit function for the situation
c) When will the painting be worth $\$ 1000$ ?
5) Graph $y=2^{x+4}$-3. Identify the domain, range, asymptotes, and transformations of the parent function $y=2^{x}$.

## Review ANSWERS

## Review

Find the solution to each equation algebraically.

1) $\sqrt{20 x-6}=\sqrt{5 x+39}$ $x=3$

$$
\text { 2) } \begin{gathered}
2(x-2)^{2 / 3}-8=192 \\
x=1002
\end{gathered}
$$

$$
\text { 3) }(x+7)^{1 / 2}-x=5
$$

$$
x=-3
$$

## Review ANSWERS

4) Your new painting is valued at $\$ 2400$. It's value depreciates $7 \%$ each year. The value is a function of time.
a) Write a recursive (next-now) equation for the situation

$$
\text { NEXT }=\text { Now *(.93) start }=2400
$$

b) Write an explicit function for the situation

$$
y=2400(.93)^{x}
$$

c) When will the painting be worth $\$ 1000$ ?

## During year 12

5) Graph $y=2^{x+4}$ - 3. Identify the domain, range, asymptotes, and transformations of the parent function $y=2^{x}$.

Domain: All real \#s OR $(-\infty, \infty) \quad H A: y=-3$
Range: y >-3 OR $(-3, \infty)$
Transformation: Left 4, down 3

## Tonight's Homework

> Packet p. 22-23 and Finish Notes p. $38-39$


