Solve each equation using the quadratic formula. Give exact answers and when necessary leave in simplest radical form!

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

1. $4 x^{2}+11 \mathrm{x}-20=0$	$2 . \mathrm{x}^{2}-5 \mathrm{x}-24=0$
3. $\mathrm{x}^{2}=3 \mathrm{x}+3$	
5. $\mathrm{x}^{2}=-\mathrm{x}+1$	4. $\mathrm{x}^{2}+5=-5 \mathrm{x}$
7. $4 \mathrm{x}^{2}+7 \mathrm{x}-15=0$	$6.4 \mathrm{x}^{2}-1=-8 \mathrm{x}$
9. $x^{2}+14=8 x$	$8 . \mathrm{x}^{2}+3 \mathrm{x}-10=0$
$11.4 x^{2}+5=-6 x$	$10 .-3 x^{2}+6 x=-5$
$13 x^{2}=10 x+4$	$12.3 x^{2}+4 x+8=0$

Select answers to the above problems. Check your answers to make sure you are on the right track.

1. $\mathrm{x}=1.25, \mathrm{x}=-4$
2. $x=\frac{3 \pm \sqrt{21}}{2}$

Day 7-8 Homework - Working with the Discriminant

Part 1 - Find the value of the discriminant for each quadratic. Show your work!
First: What is the formula used to calculate the discriminant?

1) $6 p^{2}-2 p-3=0$
2) $-2 x^{2}-x-1=0$
3) $-4 m^{2}-4 m+5=0$
4) $5 b^{2}+b-2=0$
5) $r^{2}+5 r+2=0$
6) $2 p^{2}+5 p-4=0$

Part 2 - Find the value of the discriminant of each quadratic AND state the number of real solutions and the number of imaginary solutions.

First: Explain the difference between real and imaginary solutions.
7) $9 n^{2}-3 n-8=-10$
8) $-2 x^{2}-8 x-14=-6$
9) $9 m^{2}+6 m+6=5$
10) $4 a^{2}=8 a-4$
11) $-9 b^{2}=-8 b+8$
12) $-x^{2}-9=6 x$
13) $-4 r^{2}-4 r=6$
14) $8 b^{2}-6 b+3=5 b^{2}$

Part 3 - Find the value of the discriminant of each quadratic AND state the number of rational solutions, irrational solutions and imaginary solutions.
First: Explain the difference between rational and irrational solutions.
15) $-6 x^{2}-6=-7 x-9$
16) $4 k^{2}+5 k+4=-3 k$
17) $-7 n^{2}+16 n=8 n$
18) $2 x^{2}=10 x+5$
19) $-10 n^{2}-3 n-9=-2 n$
20) $-9 r^{2}-8 r-1=r-r^{2}-9$

Critical thinking and application questions -

23) Write a quadratic equation that has 2 imaginary solutions and show why your answer must have 2 imaginary solutions.
24) In your own words, explain why a quadratic cannot have only one imaginary solution.
25) Farmer Smith built a rectangular pen for his animals using 14 meters of fence. He used part of one side of his barn as one length of the pen. He maximized the area for the 14 meters of fence.

Farmer Jones built a rectangular pen for her animals using 18 meters of fence. She used part of one side of her barn as one length of the pen. Her pen had a length that was 2 meters greater than the length of Farmer Smith's pen. Her pen had a width that was 1 meter greater than the width of Farmer Smith's pen.

How much larger is Farmer Jones' rectangular pen than Farmer Smith's?
I. On each grid, Ginger, $\mathbf{G}(\mathbf{x})$ is graphed. Graph the given function.

1. Graph: $\mathrm{y}=\mathrm{G}(\mathrm{x})-6$.

2. Graph: $\mathrm{y}=\mathrm{G}(\mathrm{x}+6)$

3. Graph: $y=G(x+2)+5$

4. Graph: $y=G(x-4)-5$

II. Using the understanding you have gained so far, describe the effect to Fred for the following functions.

Equation	Effect to Fred's graph
1. $y=F(x)+82$	
2. $y=F(x-13)$	
3. $y=F(x+9)$	
4. $y=F(x)-55$	
5. $y=F(x-25)+11$	

Using the understanding you have gained so far, write the equation that would have the following effect on Fred's graph.

Equation	Effect to Fred's graph
1.	Translate left 51 units
2.	Translate down 76
3.	Translate right 31
4.	Translate right 8 and down 54
5.	Translate down 12 and left 100

III. Determine the domain and range of each parent function.

Domain: \qquad
Range: \qquad
2. Ginger, $\mathrm{G}(\mathrm{x})$

Domain: \qquad
Range: \qquad
IV. Consider a new function, Polly, $\mathrm{P}(\mathrm{x})$.

Polly's Domain is $\{x \mid-2 \leq x \leq 2\}$. Its range is $\{y \mid-3 \leq y \leq 1\}$.

Use your understanding of transformations of functions to determine the domain and range of each of the following functions. (Hint: You may want to write the effect to Polly first.)

1. $P(x)+5$

Domain: \qquad
Range: \qquad
2. $P(x+5)$

Domain: \qquad
Range: \qquad

Day 10 Homework

Part I) Transformations of quadratic graphs

Describe how the graph of $y=x^{2}$ is changed to produce the graphs of the following equations? Use vocabulary like translate, reflect, shrink, stretch in the blank. If more than one change is needed, you may write up to 3 of these options in the blank. You must be able to answer questions like these without a calculator. Use your calculator only to check answers.

1. $y=x^{2}+5$
2. $y=(x+2)^{2}$
3. $y=(x-9)^{2}$
4. $y=-4 x^{2}$
5. $y=x^{2}-3$
6. \qquad Example: Translate up 5
7. \qquad
8. \qquad
9.
10. \qquad
11. \qquad
12. \qquad
13. \qquad
14. \qquad
15. \qquad
16. $y=\frac{2}{5}(x+2)^{2}+1$
17. \qquad
18. $y=3(x-1)^{2}-2$
19. \qquad
20. The graph of $f(x)=x^{2}$ is translated 6 units up and 3 units to the right. Write a function $g(x)$, in standard form, to describe the graph produced by the translation.
21. \qquad

Part II) Transformations of Fred Functions

This is the function Bowl, $\mathbf{B}(\mathbf{x})$.

1. List its characteristic points.
2. Are these the only points on the graph of Bowl? Explain.
3. What is the domain of Bowl?

4. What is the range of Bowl?

For each of the following, list the effect on the graph of Bowl and then graph the new function.
5. $y=B(-x)$
6. $y=-B(x)$

8. $y=3 B(x)$

Day 11 Homework - Quadratic Systems and Inequalities

Graph each quadratic inequality. Remember to show your work algebraically to receive full credit!

1. $y \leq-x^{2}+2 x+3$
2. $y>3 x^{2}+18 x+15$
3. $y \leq 4 x^{2}-1$

Solving Quadratic Inequalities

Solve each inequality. Express your solution using set notation.
4. $x^{2}-x-20>0$
5. $x^{2}-10 x+16<0$
6. $x^{2}+4 x+3 \leq 0$
7. $9 z \leq 12 z^{2}$
8. $4 t^{2}<9$
9. $9 x^{2}+31 x+12 \leq 0$
10. $4 x^{2}+4 x+1>0$
11. $x^{2}+64 \geq 16 x$

Solve each system of equations graphically. Remember to show your work algebraically to receive full credit!
12. $y \geq-x^{2}-6 x-5$
$y \leq-x^{2}+6 x$
13. $y \geq x^{2}-x-6$
$y \geq-x^{2}-x+6$

14. Consider the system of equations: $y=2 x^{2}+13 x-15$ and $y=2 x+25$
a. Illustrate with a graph what you expect to see.
b. Find a solution to the system of equations algebraically.

15. Explain how it is possible for a system with a linear equation and a quadratic equation to have no solutions.

Review and Practice - some of these problems are like ones on the Released Final Exam

1. Which one of these is an even function?
a) $y=x^{2}+4 x+4$
b) $y=x^{2}-4 x+4$
c) $y=x^{2}+7 x$
d) $y=x^{2}$
2. Write Equation of the Parabola in Standard Form. Show ALL work by hand!!

3. A rectangular floor has a rectangular rug on it. The floor's width is 5 feet greater than the floor's length, x. The rug's width is 3 feet less than the floor's width. The rug's length is 6 feet less than the rug's width. Write a function, $R(x)$, in simplified form to represent the area of the floor not covered by the rug.
4. A piece of cardboard that is 14 inches by 18 inches is used to form a box with an open top by cutting away congruent squares with side lengths, x, from the corners. Write an equation y, in terms of x, in standard form to model the surface area of the open box after the corners are cut away.
5. Each year, a local school's Rock the Vote committee organizes a public rally. Based on previous years, the organizers decided that the Income from ticket sales, $\mathrm{l}(\mathrm{t})$ is related to ticket price t by the equation $I(t)=400 t-40 t^{2}$. Cost $C(t)$ of operating the public event is also related to ticket price t by $C(t)=400-40 t$.
a. What ticket price(s) would generate the greatest income? What is the greatest income possible? Explain how you obtained the value you got.

Ticket price(s) \qquad Income \qquad
b. For what ticket price(s) would the operating costs be equal to the income from ticket sales? Explain how you obtained the answer.
c. Which of the following rules would give the predicted profit $P(t)$ as a function of the ticket price?
i. $P(t)=-40 t^{2}+440 t-400$
ii. $P(t)=-40 t^{2}-440 t-400$
iii. $\quad P(t)=-40 t^{2}-360 t+400$
iv. $P(t)=-40 t^{2}-360 t-400$
v. $P(t)=40 t^{2}-440 t+400$

Day 12 Homework - Test Review \& Study Guide

Unit 2 Test - Modeling with Quadratics Show ALL work for credit! Use extra paper, if needed.
Factor Completely:

1. Factor $x^{2}+8 x+15$	2. Factor $x^{2}-11 x+24$
Answer:	Answer:
3. Factor $x^{2}+x-12$	4. Factor $3 x^{2}+8 x+5$
Answer:	Answer:

Factor And Solve:

5. Solve $(5 x-4)(x+3)=0$	6. Solve $x^{2}-8 x+12=0$
Answer:	Answer:
7. Solve $x^{2}+12=7 x$	8. The quadratic formula is
Answer:	
9. A quadratic has	10. Find the exact value of the solution(s) of a. $-4 x+3=x^{2}$
a. 2 real solutions when	
b. 1 real solution when	b. $3=3 x^{2}+4 x$
c. 0 real solutions when	
11. How many real solutions does each quadratic have?	12. How many times will a parabola touch the x axis if its quadratic has
a. $y=x^{2}+x+5$	
b. $y=x^{2}+6 x+9$	a. 2 real solutions \qquad b. 1 real solution
c. $y=x^{2}+6 x+8$	c. 0 real solutions

Graphs of Quadratics

13. Label the graph to show the
y-intercept
zeros
vertex
14. To find the x-value of the vertex you average the \qquad .

15. What are two other vocabulary terms for
x-intercept?

16. The vertex of $y=-x^{2}+8 x-13$ is at	17. The x -intercepts of $y=x^{2}+2 x-8$ are
18. A parabola opens up (like a smile) if	19. A parabola opens down (like a frown) if
20. Which parabolas will open up? a. $y=-x^{2}+3 x-5$ b. $y=x^{2}-3 x+5$ c. $y=x^{2}+3 x-5$ d. $y=-x^{2}-3 x+5$	21. Which parabolas will open down? a. $y=-x^{2}+3 x-5$ b. $y=x^{2}-3 x+5$ c. $y=x^{2}+3 x-5$ d. $y=-x^{2}-3 x+5$
22. The y-intercept of $y=-x^{2}+8 x-13$ is	23. Describe how the graph of $y=x^{2}$ is translated for each equation. a. $y=x^{2}+4$ b. $y=x^{2}-5$ c. $y=(x-3)^{2}$ d. $y=3(x+2)^{2}$ e. $\quad y=(x+6)^{2}+2$

Applications

24. A rocket is launched into the air. Its height, in feet, is given by the equation
$h(x)=-16 x^{2}+300 x+20$.
The starting height of the rocket is \qquad .

The maximum height is \qquad .

The rocket hits the ground after \qquad seconds.
25. Two teenagers throw pennies from the top of the school. The quadratics at the right show how high each penny over time.

What are the maximum heights of each penny?
Emily: $y=-16 x^{2}+20 x+47$
Isaiah: $y=-16 x^{2}+15 x+47$

When did each penny hit the ground?
26. You are working as an intern for Isaac Newton.

Professor Newton is researching the behavior of gravity. He gathered the data to the right showing the height of a projectile at different times.
a. What is the equation of the quadratic that matches the data?

x	y
0	12
1	15
2	16
5	7

b. When will the object hit the ground?

Review from last unit

27. Solve for x.

Answer \qquad

28. In the figure to the right, $\triangle A B C \sim \triangle D E F$.

What do x and y equal?
$x=$ $y=$

29. Given B is between A and $C, A B=2 x+9, B C=4 x-7$, and $A C=38$. Find $B C$.
30. Write the equation, in standard form, of the parabola in the graph below. The vertex is at $(11,18)$. Show ALL your work by hand.

31. Meg is building a garden up against one side of her house. She has 150 feet of fencing. Find the dimensions of the dog's pen to maximize the area.

Solve each quadratic inequality. Express your solutions using set notation.
32. $x^{2}+5 x \geq 24$
33. $5 x^{2}+10 \geq 27 x$

For each of the following, list the effect on the graph of Cardio, $C(x)$, shown below. Then graph the new function.
34. $y=C(-x)$
35. $y=-1 / 3 C(x)$
36. $y=C(x+2)-5$

Graph each quadratic inequality. Remember to show your work algebraically to receive full credit!
37. $y>-x^{2}+4 x+5$
38. $y \leq x^{2}+6 x+8$

x-intercepts: ____
vertex:
is vertex a max or min?
Aosintercept:
x-intercepts: \qquad
vertex: \qquad
is vertex a max or min?
y-intercept: \qquad
AoS: \qquad

Solve each system of equations. Remember to show your work algebraically to receive full credit!
39. $y=-x^{2}+2 x$

$$
y=x^{2}+2 x
$$

40. $y=x^{2}$
$y=-x+2$

Selected Answers:

1. $(x+3)(x+5)$	11a. 0, 11b. 1, 11c. 2	24. starting height $=20$ feet
2. $(x-8)(x-3)$	12a. 2, 12b. 1, 12c. 0	max height $=1426$ feet
3. $(x+4)(x-3)$	14. zeros	hits ground in 18.8 sec
4. $(3 x+5)(x+1)$	15. zero, root	
	16. $(4,3)$	25. Emily height 53.25 feet
5. $x=4 / 5, x=-3$	17. (-4,0), $(2,0)$	Isaiah height 50.52 feet
6. $x=2, x=6$	18. if x^{2} is positive	Emily time 2.45 sec
7. $\begin{aligned} \mathrm{x}=3, \mathrm{x}=4 \\ \text { 8. }\end{aligned}$	19. if x^{2} is negative	Isaiah time 2.25 sec
	20. b and c	26a. $y=-x^{2}+4 x+12$
	21. a and d	26b. 6 seconds
8. $x=\frac{2 a}{2 a}$	22. (0, -13)	
9a. $b^{2}-4 a c$ is positive		27. $x=10$
$9 \mathrm{~b} . b^{2}-4 a c$ is zero	23a. up 4	28. $x=55, y=15$
9c. $b^{2}-4 a c$ is negative	23b. down 5	29. $B C=17$
$9 \mathrm{c} . b^{2}-4 a c$ is ne	23c. right 3	
	23d. 3 times narrower, and left 2	$y=-18 / 81 x^{2}+44 / 9 x-80 / 9$ 31. 37.5 ft by 75 ft
$-4 \pm \sqrt{28} \quad-4 \pm 2 \sqrt{7}$	23 e . left 6 and up 2	32. a. $\{x \mid x \leq-8$ or $x \geq 3\}$
$x=\frac{-4 \pm \sqrt{ } \angle 0}{2}=\frac{-4 \pm \angle \sqrt{ } /}{2}=-2 \pm \sqrt{7}$ b.		b. $\left\{x \left\lvert\, x \leq \frac{2}{5}\right.\right.$ or $\left.x \geq 5\right\}$
$-4 \pm \sqrt{52}-\frac{-4 \pm 2 \sqrt{13}}{}-\frac{-2 \pm \sqrt{13}}{}$		
$\begin{array}{lll}6 & 6 & 3\end{array}$		

Exponent Rules Review

Remember to show your work!!

Why is a hill like a lazy young dog?

Complete the problems using the power rules listed to the right. Then, insert the letter beside your answer in the place at the bottom of the page that matches your answer.

$$
\begin{aligned}
x^{6} \bullet x^{3} & =_ \\
\frac{x^{11}}{x^{3}} & =_0
\end{aligned}
$$

$$
y^{0}=\ldots I
$$

$$
\left(x^{3}\right)^{4}=\ldots A
$$

$$
x^{-3}=\ldots P
$$

$$
3 x^{2} y \cdot 2 x y^{3}=\ldots \quad P
$$

$$
\frac{x^{4}}{x^{-7}}=-S
$$

Power Rules

1. Multiplication

$$
x^{a} \cdot x^{b}=x^{a+b}
$$

2. Division

$$
\frac{x^{a}}{x^{b}}=x^{a-b}
$$

3. Power to a Power

$$
\left(x^{a}\right)^{b}=x^{a \cdot b}
$$

4.Zero Exponent

$$
x^{0}=1
$$

5. Negative Exponent

$$
x^{-a}=\frac{1}{x^{a}}
$$

$$
\sqrt{72}=\ldots E
$$

$$
2^{-4}=\ldots T
$$

$$
\sqrt[3]{27}=\ldots I
$$

$$
\sqrt{16 x^{4}}=\ldots \quad U
$$

$$
\left(3 x^{3} y^{2}\right)^{2}=
$$

$$
1 \frac{1}{16} x^{18} 3 x^{9} 6 x^{2} y^{3} x^{12} 16 x^{11} 9 x^{6} y^{4} x^{8} \frac{1}{x^{3}} 6 \sqrt{2} 3 \sqrt{8} 4 x^{2} 6 x^{3} y^{4}
$$

EXPONENTS PRACTICE

Simplify the following problems completely. Remember to show your work for credit!

1. $3 \cdot 4^{3}$
2. $4 x^{3} \cdot 2 x^{3}$
3. $x^{5} \cdot x^{3}$
4. $2 x^{3} \cdot 2 x^{2}$
5. $\frac{6^{5}}{6^{3}}$
6. $\frac{x^{4}}{x^{7}}$
7. 8^{0}
8. $(-9 x)^{0}$
9. $\left(v^{4}\right)^{3}$
10. $\left(x^{2} y\right)^{4}$
11. $\frac{6 x^{7}}{2 x^{4}}$
12. $\frac{8 x^{5}}{4 x^{2}}$
13. $\left(2 c d^{4}\right)^{2}(c d)^{5}$
14. $\left(2 f g^{4}\right)^{4}(f g)^{6}$
15. $\frac{x^{5} y^{6}}{x y^{2}}$
16. $\frac{x^{2} y^{5}}{x y^{4}}$
17. $\left(\frac{4 x^{5} y}{16 x y^{4}}\right)^{3}$
18. $\left(\frac{5 x^{3} y}{20 x y^{5}}\right)^{4}$
19. y^{-7}
20. 7^{-2}
21. $\frac{1}{x^{-5}}$
22. $\frac{1}{2^{-4}}$
23. $x^{5} \cdot x^{-1}$
24. x^{-6}
25. $x^{9} \cdot x^{-7}$
26. $\left(j^{-13}\right)\left(j^{4}\right)\left(j^{6}\right)$
27. $\frac{x^{-1}}{x^{-8}}$
28. $\frac{52 x^{6}}{13 x^{-7}}$
29. $\left(f^{-3}\right)\left(f^{2}\right)\left(f^{-3}\right)$
30. $\frac{x^{-4}}{x^{-9}}$
31. $\frac{24 x^{6}}{12 x^{-8}}$
32. $\frac{3 x^{2} y^{-3}}{12 x^{6} y^{3}}$
33. $\left(2 x^{3} y^{-3}\right)^{-2}$
34. $\frac{2 x^{4} y^{-4}}{8 x^{7} y^{3}}$
35. $\left(4 x^{4} y^{-4}\right)^{3}$
36. $5 x^{2} y\left(2 x^{4} y^{-3}\right)$
