Unit 2 Day 7

Quadratic Formula \& the Discriminant

Warm Up Day 7

1. Solve each of the quadratic functions by graphing and algebraic reasoning:
a. $x^{2}-3=0$
b. $x^{2}+5 x-8=0$
c. Explain why having alternative methods of solving quadratic functions is important.
2. Simplify the radicals.
a. $\sqrt{50}$
b. $3 \sqrt{80}$
3. Find the equation of the graph in standard form. Show all work.

Warm Up Answers

1. Solve each of the quadratic functions by graphing and algebraic reasoning:
a. $x^{2}-3=0 \pm \sqrt{3}$
b. $x^{2}+5 x-8=0$ Approx. $\{-6.27,1.27\}$ (Use Calc "zeros" feature)
c. Explain why having alternative methods of solving quadratic functions is important.

Sample Answer: Some quadratic equations cannot be factored, so we need multiple methods. Getting a decimal answer in the calculator is rounded, so it isn't a precise or exact answer.

$$
\frac{\frac{-5 \pm \sqrt{57}}{2}}{\text { Today you'll }}
$$

see how to get an exact
answer for non factorable quadratics like problem b ©
2. Simplify the radicals.
a. $\begin{aligned} & \sqrt{50} \\ & 5 \sqrt{2}\end{aligned}$

OR $\sqrt{25 \cdot 2}=\sqrt{25} \cdot \sqrt{2}=5 \sqrt{2}$
b. $3 \sqrt{80} \quad 12 \sqrt{5}$

OR $3 \sqrt{16 \bullet 5}=3 \sqrt{16} \cdot \sqrt{5}=12 \sqrt{5}$
3. Find the equation of the graph in standard form. Show all work.

$$
y=-x^{2}-2 x+3
$$

Homework Answers

1)

Verrazano Bridge

Horizontal Distance (x)	Height of Cable (y)
0	160
100	114.4
200	77.6
300	49.6
400	30.4
500	20

Tappan Zee Bridge
$y=.00025 x^{2}-.2 x+100$
a. Using the information, determine the length of each bridge to decide which one is longest and shortest.

Short: Brooklyn 700 ft , Long: Verrazano 1136 ft *, Tappan Zee: 800* *To find length, get equation in $y 1$, THEN find y-value of y-intercept THEN do $\mathrm{y}^{2}=\mathrm{y}$-value of y -intercept THEN do 2nd Trace Intersect
b. Which bridge's cable gets the closest to the road? How do you know this?

Brooklyn: $(350,<10)$, Verrazano: $(568,18)$, Tappan Zee: $(400,60)$ The Brooklyn Bridge gets closest to the road because it has the vertex with the lowest y-value

Homework Answers

2) $9 y d s \times 7 y d s$
3) a) Henry's at around 4.7 seconds.
b) Henry's at around 92 feet.
c) Henry threw the ball the highest and it stayed in the air longest.
4) $y=-\frac{3}{8} x^{2}+\frac{3}{4} x+\frac{45}{8}$
5) $\quad F(x)=3 x^{2} \quad 3 x \quad 18$

Homework Tonight Packet p. 10-12 ODDS only And Complete all of the "First" problems

Study For The Quiz Tomorrow!

* Study For The Quiz Tomorrow! *

It will be Cumulative of all the Unit 2 material - including today's material.

Remember to use the resources on Blackboard for help: -PowerPoint's -extra practice problems

The Quadratic Formula

Solving Quadratics with the Quadratic Formula

Standard form of a quadratic equation: $y=a x^{2}+b x+c$

Solutions of some quadratic equations are not rational, or are too messy to obtain by factoring. For such equations, the most common method of solution is the quadratic formula.

The quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Study this \longleftarrow for
tomorrow's quiz!! ©
can be used to solve for x.
Notice that there is a +/- sign in the formula. There are actually
TWO ANSWERS for any quadratic formula.

Tips for using Quadratic Formula! (add these in to your notes)

- Be careful with signs!
- Substitute values into the formula in parentheses! This is especially important with b . Remember, the calculator follows the order of operations, but is only as smart as its user!
- Always simplify
- Check if the radical can be simplified \& do it!
- At the end of the problem, cover up the radical and check for a GCF. If there is one, you must factor it out of all 3 parts!

Solve using the quadratic formula.

Example 1: $\quad x^{2}+9 x+20=0$

$$
x=\frac{9 \pm 1}{2} \quad x=\{5,4\}
$$

Example 2: $x^{2}-x=5 x-9$

$$
x=\frac{6 \pm 0}{2} \quad x=\{3\}
$$

Example 4: $7 x^{2}-12 x+3=0$

$$
x=\frac{6 \pm \sqrt{15}}{7}
$$

You TRY Some Practice Problems!

Example 3: $-x^{2}+2 x=2$

Example 5: $4 x^{2}+12 x+9=0$

Example 6: $x^{2}-5 x-5=0$

You TRY Answers!

Example 3: $-x^{2}+2 x=2$

$$
x=\frac{-2 \pm \sqrt{-4}}{-2} \quad x=1 \pm i
$$

Example 5:

$$
\begin{aligned}
4 x^{2}+12 x+9 & =0 \\
x & =\frac{-12 \pm 0}{8} \quad x=\left\{\frac{3}{2}\right\}
\end{aligned}
$$

Example 6: $\quad x^{2}-5 x-5=0$

$$
x=\frac{5 \pm 3 \sqrt{5}}{2}
$$

The Discriminant

Notes p. 21 Types of Zeros

Take a few minutes on this Discovery Activity

Noses

Recall the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

This part in the square root helps us to determing how many solutions a quadratic will have:

$$
b^{2}-4 a c
$$

This is called the Discriminant.
Calculate the discriminant for these problems.

1. $x^{2}-x-6=0$

25
2. $x^{2}+16=0$
-64
3. $x^{2}+4 x+4=0$

0

Quadratic solutions are either real or imaginary.

- Real solutions are the solutions you get from factoring, the zeroes on the graph, and when you are able to do the square root in the quadratic formula.
- Imaginary solutions do not show up on the graph or when factoring. In fact, quadratics with imaginary solutions cannot be factored.
- You'll study more about Imaginary Solutions in Math 3!

Discriminants

- If the discriminant is positive, the quadratic has two real solutions.

$$
\text { Like } x=3 / 2,-1 / 2 \text { Or } x= \pm 2 \sqrt{5}
$$

- Rational solutions are when the discriminant evaluates to _a perfect square. Like $x=3 / 2,-1 / 2$ Or $x= \pm 2$
- Irrational solutions are when the discriminant evaluates to NOT a perfect square.

$$
\text { Like } x= \pm 2 \sqrt{5}
$$

Remember, rational means it can be a ratio... a simplified fraction! ©

Discriminants

- If the discriminant is zero, the quadratic has one real rational solution.

$$
\text { Like } x=3 \text { Double Root! © }
$$

- If the discriminant is negative, the quadratic has two imaginary solutions

$$
\text { Like } x= \pm \sqrt{ }-4
$$

Discriminant FLOW CHART Add this to your Notes

Positive

Not Perfect 2 real irrational Square solutions

Zero $\longrightarrow 1$ real rational solution

Negative $\longrightarrow 2$ imaginary solutions

Practice Notes p. 22-23: YOU TRY!

Determine the amount and types of solutions.

1. $x^{2}-6 x+11=2$

0 ; one real rational solution
3. $3 x^{2}+48=0$
-576; two imaginary solutions
5. $x^{2}+x+1=0$
-3; two imaginary solutions

$$
\begin{aligned}
& \text { 7. } 6 x^{2}+12 x+6=0 \\
& \text { 0; one real rational solution }
\end{aligned}
$$

2. $3 x^{2}+5 x=12$

169; two real rational solutions
4. $x^{2}-27=0$

108; 2 real irrational solutions
6. $x^{2}+4 x-1=0$

20; 2 real irrational solutions
8. $-3 x^{2}-4 x-8=0$
-80; two imaginary solutions

Given the following graphs of quadratic functions:
a) determine the sign of the discriminant and
b) whether the solutions are real or imaginary.
1.

Negative; 2 imaginary solutions
3.

Positive; 2 real solutions
2.

0; 1 real solution
4.

0; 1 real solution

EVERYTHING I NEED TO KNOW ABOUT QUADRATICS

Value of the discriminant $\left(b^{2}-4 a c\right)$	Number and type of roots	What does the graph look like?
$\mathrm{b}^{2}-4 \mathrm{ac}$ is positive and a perfect square $\mathbf{b}^{2}-4 \mathrm{ac}>0$	2 real rational roots	2 real irrational roots
$\mathrm{b}^{2}-4 \mathrm{ac}$ is positive and is NOT perfect square $\mathrm{b}^{2}-4 \mathrm{ac}>0$	Values cannot be written as a simple fraction! $\mathrm{b}^{2}-4 \mathrm{ac}=0$	1 real rational root
$\mathrm{b}^{2}-4 \mathrm{ac}$ is negative $\mathrm{b}^{2}-4 \mathrm{ac}<0$	roots 23	

Discriminant Practice Notes p. 24

Function	Discriminant	Number and Type of Solutions
Ex: $x^{2}-3 x-4=0$	25	2 rational solutions
$1 \cdot x^{2}-6 x+9=0$		
$2 \cdot x^{2}+6 x=-9$		
3. $x^{2}-6 x-16=0$		
$4 \cdot 2 x^{2}-6 x-13=0$		
5. $-x^{2}+2 x-1=0$		
$6 \cdot 2 x^{2}+3=2 x$		
$7 \cdot x^{2}+2 x+1=0$		
$8 \cdot x^{2}+2 x=-3$		
9. $x^{2}-6 x+9=0$		
$10 \cdot x^{2}+5 x+8=0$		
$11 \cdot 2 x^{2}-5 x+6=0$		
$12 \cdot x^{2}-5 x=10$		
$13 \cdot x^{2}-6 x+3 x=4-11$		25

Function	Discriminant	Number and Type of Solutions
Ex: $x^{2}-3 x-4=0$	25	2 real rational solutions
$1 . x^{2}-6 x+9=0$	0	1 real rational solution
$2 . x^{2}+6 x=-9$	0	1 real rational solution
$3 . x^{2}-6 x-16=0$	100	2 real rational solutions
$4.2 x^{2}-6 x-13=0$	140	2 real irrational solutions
$5 .-x^{2}+2 x-1=0$	0	1 real rational solution
$6.2 x^{2}+3=2 x$	-20	2 imaginary solutions
$7 . x^{2}+2 x+1=0$	0	1 real rational solution
$8 . x^{2}+2 x=-3$	-8	2 imaginary solutions
$9 . x^{2}-6 x+9=0$	0	1 real rational solution
$10 . x^{2}+5 x+8=0$	-7	2 imaginary solutions
$11.2 x^{2}-5 x+6=0$	-23	2 imaginary solutions
$12 . x^{2}-5 x=10$	65	2 real irrational solutions
$13 . x^{2}-6 x+3 x=4-11$	-126	2 imaginary solutions

Homework Tonight Packet p. 10-12 ODDS only And Complete all of the "First" problems

Study For The Quiz Tomorrow!

