Unit 2 Day 4

Designing Parabolas
 \& Quiz

Warm Up

For the following two equations, find the following values, showing your work for finding them by hand! Then sketch the graphs on graph paper.
a.) $x^{2}-x-20=0$
zeros:
$(5,0)(-4,0)$
vertex:
$\left(1 / 2,-20 \frac{1}{4}\right)$
y-intercept: (0, -20)
Max/min?: Minimum
Axis of Symmetry (AoS): $x=1 / 2$
b.) $x^{2}+8 x+15=0$
zeros: $\quad(-3,0)(-5,0)$
vertex: $\quad(-4,-1)$
y-intercept: $(0,15)$
Max/min?: Minimum
Axis of Symmetry (AoS): $x=-4$
Done early? Complete Factoring Practice at the bottom of Notes p. 9

Homework Answers

Function	Solutions (solve by factoring)	x-intercept locations (x, y)	y-intercept location (x, y)	Vertex location (x,y)	Axis of Symmetry	Is the vertex the maximum or minimum value of the function? Explain why.
1. $y=x^{2}+6 x+8$	$\begin{aligned} & (x+4)(x+2) \\ & x=-4,-2 \end{aligned}$	$\left(\begin{array}{ll} (-4, & 0) \\ (-2, & 0) \end{array}\right.$	$(0,8)$	$(-3,-1)$	$x=-3$	Minimum,
2. $y=3 x^{2}+6 x$	$\begin{aligned} & 3 x(x+2) \\ & x=0,-2 \end{aligned}$	$\left(\begin{array}{l} (0,0) \\ (-2,0) \end{array}\right.$	$(0,0)$	$(-1,-3)$	$x=-1$	Minimum, $a>0$
3. $y=-x^{2}+8 x-12$	$\begin{aligned} & -1(x-6)(x-2) \\ & x=6,2 \end{aligned}$	$\begin{aligned} & (6,0) \\ & (2,0) \end{aligned}$	$(0,-12)$	$(4,4)$	$x=4$	Maximum, $a<0$

More Details \& Steps for \#1 on next slides ->

Homework Answers

	momeme	come					
	$(x+4)(x+2)$	$\begin{aligned} & (-4,0) \\ & (-2,0) \\ & \hline \end{aligned}$					Minimum
Remember to write the x-intercepts, Remember to y-intercepts, and vertex as write the Axis coordinate pairs! of Symmetry as a line. Pu the $x=$ on it!							

More Details \& Steps for \#1 on next slide - >

Homework Answers

Function	Solutions (solve by factoring)	x-intercept locations (x, y)	y-intercept location (x, y)	Vertex location (x, y)	Axis of Symmetry	Is the vertex the maximum or minimum value of the function? Explain why.
$1 . y=x^{2}+6 x+8$	$(x+4)(x+2)$	$(-4,0)$	$(0,8)$	$(-3,-1)$	Minimumm	
$(x=-4,-2$						

To graph parabolas:
*Factor and solve to find the zeros
$\rightarrow 1^{\text {st }}$ and $2^{\text {nd }}$ Points) Graph the x-intercepts.
*Average x-intercepts to find the x-value of the vertex
Vertex x-value $=(-4+-2) / 2=-3 \quad$ (Also, x-value of A.o.S.)
*Substitute the vertex x-value into the equation to find the y-value of the vertex. Vertex y-value $=(-3)^{2}+6(-3)+8=-1$
$\rightarrow 3^{\text {rd }}$ Point) Graph the Vertex $(-3,1)$
*Substitute $x=0$ into the equation to find the y-value of the y-intercept $\quad y=(0)^{2}+6(0)+8=8$ -> $4^{\text {th }}$ Point) Graph the y-intercept $(0,8)$ *Reflect the y-intercept (or $4^{\text {th }} \mathrm{pt}$) across the AoS
$\rightarrow 5^{\text {th }}$ point) " y-intercept mirror" $(-6,8)$

Graphs
on next
slide - >

Homework Answers
 Graphs of each

1.)

3.)

2.)

Homework Answers

4.) The equation for the motion of a projectile fired straight up at an initial velocity of $64 \mathrm{ft} / \mathrm{s}$ is $h=64 t-16 t^{2}$, where h is the height in feet and t is the time in seconds. Find the time the projectile needs to reach its highest point. How high will it go?

Find the zeros.

$$
\begin{gathered}
h=64 t-16 t^{2}=16 t(4-t) \\
t=0,4 \text { are the zeros }
\end{gathered}
$$

Find the halfway location (the vertex)

$$
t=(0+4) / 2=2
$$

Time at highest point is 2 seconds.
Substitute the vertex's t-value into the equation.

$$
h=64(2)-16(2)^{2}=64
$$

Height at highest point is at 64 ft .

Tonight's HW

Notes pg. 16-18-10-11(top $\frac{1}{2}$)
Packet pg. 5

\& Start Packet pg. 6

(as always, be sure to show work!)
Hint: If you get stuck on pg. 6, look back at the HW assigned for the night of the Unit 1 Test. ©

Anyone still missing printed notes?

- Remember, if you need me to print notes for you, have your parent email me
- Printed notes are ESSENTIAL for Day 5 and 6, so if you won't be able print them, let me know! ©

Quadratic Regression

- Stat \rightarrow Edit then enter the
 x values into L1 and the y values into L 2 .
- Stat \rightarrow Calc \rightarrow QuadReg After you press QuadReg, there are two ways to finish the regression, depending on what calculator you have...

Tree age (in years)	Sap production (in ml)
7	200
50	350
10	370
17	380
35	480
8	280
27	420
40	430
12	320
45	360
22	480
42	390
30	430
37	450

Quadratic Regression (continued)

For older calculators (if
pressing QuadReg keeps you on the main screen)
After Quad Reg
Press $2^{\text {nd }} 1$ to get L1,
Press $2^{\text {nd }} 2$ to get L2,
Press Vars Yvars 11 to get Y1
This step is KEY!!
So your calc should say QuadReg L1, L2, Y1

$$
y=-0.359 x^{2}+22.032 x+119.725
$$

Round to nearest thousandth

Quadratic Regression (continued)

Maple sap production vs. tree age

- Turn on scatter plot with $2^{\text {nd }} y=$ and Enter
- Use Zoom 9 to show your data well on the graph

Tree age (in years)	Sap production (in ml)
7	200
50	350
10	370
17	380
35	480
8	280
27	420
40	430
12	320
45	360
22	480
42	390
30	430
37	450

Applications

A rancher is constructing a cattle pen by the river. She has a total of 150 ft . of fence and plans to build the pen in the shape of a rectangle. Since the river is very deep, she needs only fence 3 sides of the pen. Find the dimensions of the pen so that it encloses the maximum area. Area $=x z \quad$ Perimeter: $2 x+z=150$

$$
\begin{aligned}
& 2 x+z=150 \rightarrow z=150-2 x \text { (plug into the area) } \\
& \text { Area }=x(150-2 x)
\end{aligned}
$$

multiplies to $150 x-2 x^{2}$ (a quadratic... with a max!)
Find the max of $y=150 x-2 x^{2} \rightarrow(37.5,2812.5)$
Dimensions: 37.5 ft by 75 ft Largest Area $=2812.5 \mathrm{ft}^{2}$

Practice

Practice: Factor and solve.

1. $4 x^{2}+7 x=2 \quad(4 x-1)(x+2)=0$ Factors

$$
x=\frac{1}{4},-2 \text { Solutions }
$$

2. $x^{2}-36=0(x+6)(x-6)=0$ Factors

$$
x=-6,6 \text { Solutions }
$$

3. $4 x^{2}+12 x-72=0 \quad 4(x+6)(x-3)=0$ Factors $x=-6,3$ Solutions
4. Factor Completely: $20 x^{2}-45$

$$
\begin{aligned}
& 5\left(4 x^{2}-9\right) \text { THEN } \\
& 5(2 x+3)(2 x-3)
\end{aligned}
$$

Discovery Activity:

Angry Birds Round 1

Complete for Hw

Angry Birds Round 2

Angry Birds Round 3

For \#2, the equation can

 be hard to read...it is $y=-0.083 x^{2}+1.82 x$

Quiz Time When you finish, begin on your homework:

Notes pg

$$
\left.10-11 \text { (top } \frac{1}{2}\right)
$$

Packet pg. 5
\& Start Packet pg. 6
(as always, be sure to show work!)
Hint: If you get stuck on pg. 6, look back at the HW assigned for the night of the Unit 1 Test.

