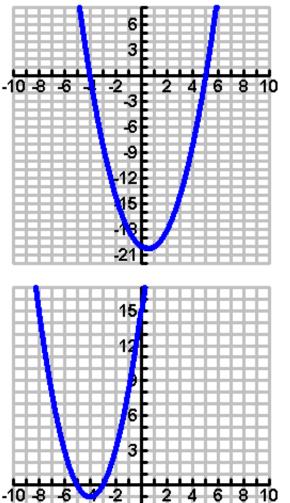
Unit 2 Day 4


Designing Parabolas & Quiz

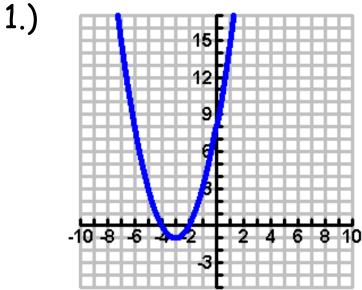
<u>Warm Up</u>

For the following two equations, find the following values, showing your work for finding them by hand! Then sketch the graphs on graph paper.

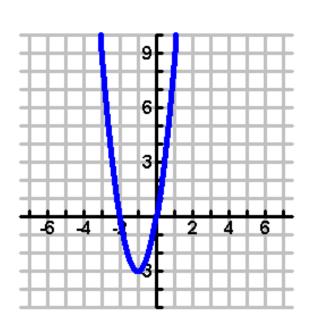
a.) $x^2 - x - 20 = 0$ (5, 0) (-4, 0) zeros: vertex: $(1/2, -20\frac{1}{4})$ y-intercept: (0, -20) Max/min?: Minimum Axis of Symmetry (AoS): x = 1/2b.) $x^2 + 8x + 15 = 0$ zeros: (-3, 0)(-5, 0)vertex: (-4, -1) y-intercept: (0, 15) Max/min?: Minimum Axis of Symmetry (AoS): x = -4Done early? Complete Factoring

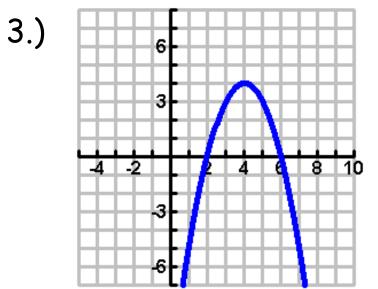
Practice at the bottom of Notes p. 9

Function	Solutions (solve by factoring)	x-intercept locations (x,y)	y- intercept location (x,y)	Vertex location (x,y)	Axis of Symmetry	Is the vertex the maximum or minimum value of the function? Explain why.
1. $y = x^2 + 6x + 8$	(x + 4)(x + 2) x = -4, -2	(-4, 0) (-2, 0)	(0, 8)	(-3,-1)	x = -3	Minimum, a > 0
$2. \ y = 3x^2 + 6x$	3x(x + 2) x = 0, -2	(0, 0) (-2, 0)	(0, 0)	(-1,-3)	x = -1	Minimum, a > 0
3. y = -x ² + 8x - 12	-1(x - 6)(x - 2) x = 6, 2	(6, 0) (2, 0)	(0,-12)	(4,4)	x = 4	Maximum, a < 0


More Details & Steps for #1 on next slides ->

Function	Solutions (solve by factoring)	x-intercept locations (x,y)	y- intercept location (x,y)	Vertex location (x,y)	Axis of Symmetry	Is the vertex the maximum or minimum value of the function? Explain why.
1. $y = x^2 + 6x + 8$	(x + 4)(x + 2) x = -4, -2	(-4, 0) (-2, 0)	(0, 8)	(-3,-1)	x = -3	Minimum
Remember to write the x-intercepts, y-intercepts, and vertex as coordinate pairs! Remember to write the Axis of Symmetry as a line. Put the x= on it!! (e the Axis ymmetry line. Put


More Details & Steps for #1 on next slide ->


			• • • •			
Function	Solutions (solve by factoring)	x-intercept locations (x,y)	y- intercept location (x,y)	Vertex location (x,y)	Axis of Symmetry	Is the vertex the maximum or minimum value of the function? Explain why.
1. $y = x^2 + 6x + 8$	(x + 4)(x + 2) x = -4, -2	(-4, 0) (-2, 0)	(0, 8)	(-3,-1)	x = -3	Minimum
' To graph pa	rabolas:					I
	l solve to find the	70rns				
	-		le e se trad		. de la	
	and 2 nd Points) (•		•		
*Average x-	-intercepts to fir	nd the x	-value a	of the	vertex	
Vertex x-value = (-4 + -2)/2 = -3 (Also, x-value of A.o.S.)						
*Substitute the vertex x-value into the equation to find the						
y-value of the vertex. Vertex y-value = $(-3)^2 + 6(-3) + 8 = -1$						
-> 3 rd Point) Graph the Vertex (-3, 1)						
*Substitute x=0 into the equation to find the y-value of the						
y-intercept $y = (0)^2 + 6(0) + 8 = 8$						
		• •		1 81		Graphs
-> 4 th Point) Graph the y-intercept (0, 8)				on next		
"Reflect the y-intercept (or 4" pt) across the AoS				slide ->		
-> 5 th point) "y-intercept mirror" (-6, 8)				Silve -/		

Homework Answers Graphs of each

2.)

4.) The equation for the motion of a projectile fired straight up at an initial velocity of 64ft/s is h = 64t - 16t², where h is the height in feet and t is the time in seconds. Find the time the projectile needs to reach its highest point. How high will it go?

Find the zeros. $h = 64t - 16t^2 = 16t(4 - t)$ t = 0, 4 are the zeros

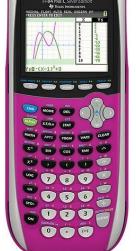
Find the halfway location (the vertex) t = (0 + 4) /2 = 2 Time at highest point is 2 seconds.

Substitute the vertex's t-value into the equation. $h = 64(2) - 16(2)^2 = 64$ Height at highest point is at 64 ft.

Tonight's HW

Notes pg. 16-18 10 - 11(top 1/₂) Packet pg. 5 & Start Packet pg. 6 (as always, be sure to show work!)

Hint: If you get stuck on pg. 6, look back at the HW assigned for the night of the Unit 1 Test. ©


Anyone still missing printed notes?

• Remember, if you need me to print notes for you, have your parent email me

 Printed notes are ESSENTIAL for Day 5 and 6, so if you won't be able print them, let me know! ^(C) Quadratic Regression

- Stat → Edit then enter the x values into L1 and the y values into L2.
- Stat \rightarrow Calc \rightarrow QuadReg

After you press QuadReg, there are two ways to finish the regression, depending on what calculator you have...

Maple sap production vs. tree age

Tree age	Sap production
(in years)	(in ml)
7	200
50	350
10	370
17	380
35	480
8	280
27	420
40	430
12	320
45	360
22	480
42	390
30	430
37	450

Directions continue ->

Quadratic Regression (continued)

For older calculators (if pressing QuadReg keeps you on the main screen)

After Quad Reg Press 2nd 1 to get L1, Press 2nd 2 to get L2, Press Vars Yvars 1 1 to get Y1 **This step is KEY!!** So your calc should say QuadReg L1, L2, Y1

Round to nearest thousandth For newer calculators (if pressing QuadReg brings up a different screen)

On that screen be sure X List is L1 and Y List is L2.

Then where it says "Store", do VARS Y-Vars 1 1 to get Y1

This step is KEY!!

 $y = -0.359x^2 + 22.032x + 119.725$

Directions continue ->

Quadratic Regression (continued)

Turn on scatter plot with 2nd y = and Enter

• Use Zoom 9 to show your data well on the graph

Maple sap production vs. tree age

Tree age	Sap production
(in years)	(in ml)
7	200
50	350
10	370
17	380
35	480
8	280
27	420
40	430
12	320
45	360
22	480
42	390
30	430
37	450

Applications

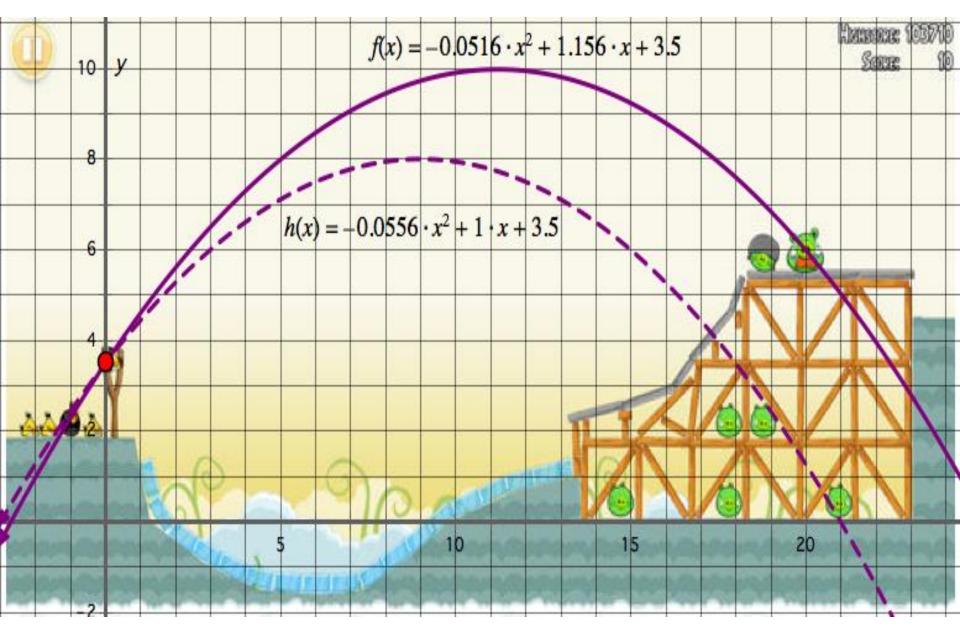
A rancher is constructing a cattle pen by the river. She has a total of 150 ft. of fence and plans to build the pen in the shape of a rectangle. Since the river is very deep, she needs only fence 3 sides of the pen. Find the dimensions of the pen so that it encloses the maximum area. Area = xzPerimeter: 2x + z = 150 $2x + z = 150 \rightarrow z = 150 - 2x$ (plug into the area) Area = x(150 - 2x)multiplies to $150x - 2x^2$ (a guadratic... with a max!) Find the max of $y = 150x - 2x^2$ \rightarrow (37.5, 2812.5) Ζ Dimensions: 37.5 ft by 75 ft Largest Area = 2812.5 ft^2 X X 13

Practice

Practice: Factor and solve.

1.
$$4x^2 + 7x = 2$$
 $(4x - 1)(x + 2) = 0$ Factors
 $x = \frac{1}{4}$, -2 Solutions

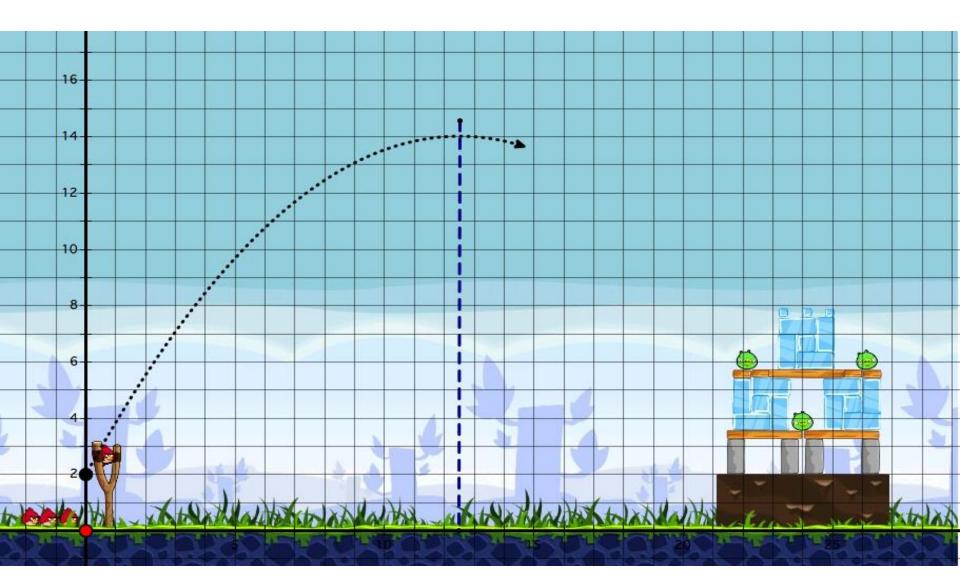
4. Factor Completely: $20x^2 - 45$



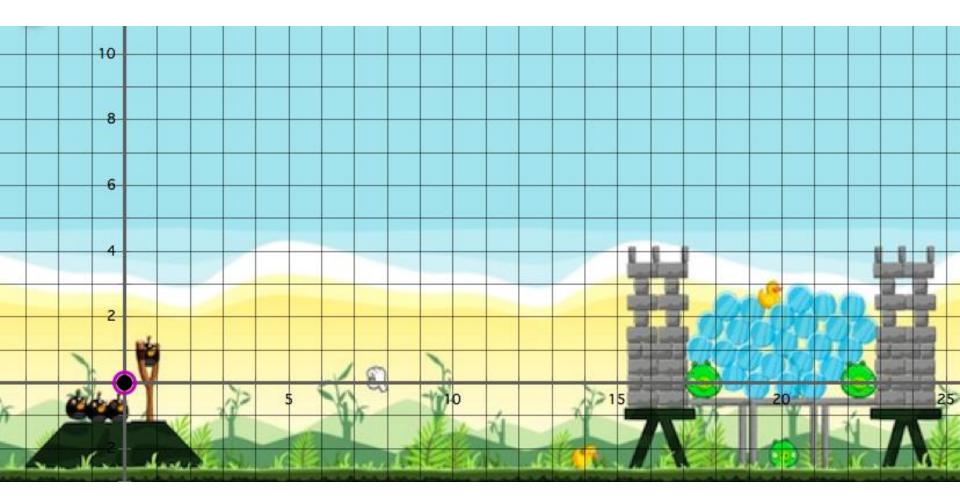
Discovery Activity:

Angry Birds Round 1

Complete for Hw


Show Investigation Notes pages on document camera when reviewing with class.

Angry Birds Round 2


¹⁷Show Investigation Notes pages on document camera when reviewing with class.

Angry Birds Round 3 For #2, the equation can be hard to read...it is y = -0.083x² + 1.82x

¹⁹Show Investigation Notes pages on document camera when reviewing with class.

Quiz Time When you finish, begin on your homework:

Notes pg. 16-18 10 - 11(top ½) Packet pg. 5 & Start Packet pg. 6 (as always, be sure to show work!)

Hint: If you get stuck on pg. 6, look back at the HW assigned for the night of the Unit 1 Test. ©