Unit 2 Day 3

Finding Extrema of Quadratic Functions

<u>Warm Up</u>

- 1. Factor the following. Then solve. a. $x^2 - 5x + 50 = 0$ prime
- b. $x^2 + 3x = 10$ Solutions: x = -5, 2Factors: (x + 5)(x - 2) = 0Solutions: x = -5, 2
- c. $2x^2 + 7x = -3$ Factors: (x + 3)(2x + 1) = 0Solutions: x = -3, -1/2

2. Factor to solve the following: a. $x^2 + 2x - 35 = 0$ (x + 7)(x - 5) = 0 x = -7, 5b. $2x^2 + x = 3$ (2x + 3)(x - 1) = 0 x = -3/2, 1c. $3x^2 + 10x = 8$ (x + 4)(3x - 2) = 0x = -4, 2/3

Packet Homework Answers (YOU ONLY HAD EVENS)

- 1.) n = 2/3, -1/4 6.) n = -3, -6
- 2.) m = 0, 3 7.) v = -6, 1
- 3.) n = 1/5, -1
- 4.) n = 1/2, 8
- 5.) k = 3, 8

- 8.) k = -2 (double root) 9.) v = 4, 3
- 10.) n = 2, -8

Packet Homework Answers		
11.) r = -1, -2	18.) × = 4/7, 7/5	
12.) b = -2, 1	19) x = 0, 4	
13.) n = 7, -1/2	20) x = 0, -2, -5	
14.) × = 4, -4/3	21) $x = 2\sqrt{14}, -2\sqrt{14}$	
15.) n = 7, 1/8	22) x = 4i, -4i	
16.) n = -4/7, -6	23) $x = 6\sqrt{2}, -6\sqrt{2}$	
17.) a = -5/7, -5	24) x = 3i, -3i	

Notes p. 6 Answers 1. $x^{2}+5x-24=0$ x = -8,32. $x^{2}-3x-28=0$ 4. $4x^{2}+3x=0$ $x = 0, -\frac{3}{4}$ 5. $4x^{2}+7x-2=0$

2. $x^2 - 3x - 28 = 0$ x = 7, -4 5. $4x^2 + 7x - 2 = 0$ $x = \frac{1}{4}, -2$

3. $3x^2 + 16x - 12 = 0$

 $x = -6, \frac{2}{3}$

 $6.9x^2 + 30x + 24 = 0$

 $x = -\frac{4}{3}, -2$

7. $24x^2 + 132x = 0$ x = 0, -11/2

Notes p. 6 Answers 8. $x^2 = 81$ 11. $5x^2 + 5 = 0$ $x = i \cdot -i$ x = 9, -912. $6x^2 - 72 = 0$ 9. $x^2 = 25$ $x = \pm \sqrt{12} = \pm 2\sqrt{3}$ x = 5, -5**13.** $3x^2 - 9 = 0$ $10.5x^2 - 20 = 0$ x = 2, -2 $x = \sqrt{3}, -\sqrt{3}$ 14. $2x^2 + 72 = 0$ x = 6i. - 6i6

Homework

- Packet p. 4
- Study for Quiz!

Finding Extrema using Zeros

Notes p. 7-8

HINT: for the graph on p. 8, you must use different units for each axis!

Show Investigation Notes pages on document camera when reviewing with class.

Notes p. 7- Check your answers!

Given the following trinomials, factor each to find the zeros:

1.
$$x^2 + 8x + 15 = 0$$
 2. $x^2 - 13x + 42 = 0$ 3. $x^2 + 2x - 24 = 0$

Polynomial	Factors	Zeros	Average of the Zeros
$x^2 + 8x + 15 = 0$	(x+3)(x+5) = 0	(-3, 0), (-5, 0)	-4
$x^2 - 13x + 42 = 0$	(x-7)(x-6) = 0	(7, 0), (6, 0)	6.5
$x^{2} + 2x - 24 = 0$	(x+6)(x-4) = 0	(-6, 0), (4, 0)	-1

Notes p. 7

 $x^{2} - 2x - 35 = 0$ (x+5)(x-7) = 0 x+5 = 0 x-7 = 0 x = -5, x = 7 $\frac{-5+7}{2} = 1$

x = 1

- To find the zeros:
 - Set the expression = 0 first!
 - Factor
 - Set each factor = 0 and solve!
- To find the vertex
 (the maximum or the minimum):

-Average the zeros to find the x-value.

Substitute the x-value into the original polynomial to find y-value Our x – value for the minimum was x = 1. So we'll substitute the 1 in for x in our original polynomial. (1)² – 2(1) – 35 = 1 – 2 – 35 = -36 So our vertex, or minimum, is (1, -36)

To find a fourth point, substitute x = 0 into the polynomial.

 $(0)^2 - 2(0) - 35 = -35$ Y-intercept = (0, -35)

Graph the four points from above with a smooth curve.

Remember to plot

*the zeros (-5, 0) and (7, 0)
*the vertex (1, -36)
*the y-intercept (0, -35)
*a 5th point -> see below!

Use your fourth point AND your knowledge of reflections & symmetry from Unit 1 for a fifth point.

HINT: for the graph, you must use different units for each axis! (like 2 on the x-axis, 10 on the y-axis)

Without using a calculator, these steps will make sketching a graph much easier! ©

What appears to be the line of symmetry on the graph? x = 1

- *Axis of symmetry: a line that divides a parabola into 2 parts that are mirror images
- (can be abbreviated A.o.S.)

**It's a line...so remember to write a line <u>equation</u> NOT just a number!

How do we know if our vertex is a maximum or a minimum?

- Remember, a minimum is the lowest point on a graph.
- A maximum is the highest point on a graph.

Axis of Symmetry

1. Write your equation in Standard Form: $y = ax^2 + bx + c$

2. Find values of a, b, and c and use formula: $x = \frac{-b}{2a}$

Example:
$$y = x^2 - 2x - 35$$
, so $a = 1$, $b = -2$, and $c = -35$.
Then use $x = \frac{-b}{2a} = \frac{-(-2)}{2(1)}$ Axis of Symmetry is $x = 1$.

*Don't forget to substitute this x-value into the original equation to find the y-value of the vertex!

Let's try another one: Graph $y = x^2 + 2x - 8$

Is the vertex of $y = x^2 + 2x - 8$ a minimum or maximum? minimum

What is the Axis of Symmetry?

x = -1

Key Details: (Notes p. 8)

To write zeros as x-intercepts, write a coordinate pair. What should the y-value be for an x-intercept? Zero! ③

For a 4th and 5th point, use the y-intercept and the "y-intercept mirror" (the reflection of the y-intercept over the axis of symmetry)

Always graph AT LEAST 5 points and make a smooth curve! Pick other points besides our typical 5 points, if needed.

Direction of parabolas discovery

Notes p. 8

Check your answers with your partner THEN discuss patterns. ©

Show Investigation Notes pages on document camera when reviewing with class.

Notes p. 8 ANSWERS

Function	Parabola opens up or down?
1. $y = x^2 + 3x + 4$	Up
2. $y = x^2 + 3x - 4$	Up
3. $y = -x^2 + 3x + 4$	Down
4. $y = x^2 - 4$	Up
5. $y = -x^2 + 4$	Down
6. $y = -x^2 - 4$	Down
7. $y = -x^2 + 3x$	Down
8. $y = x^2 - 5x - 2$	Up
9. $y = -x^2 - 5x - 2$	Down

Summary!

What determines if the parabola opens up or down??

If a > 0 then the parabola opens up If a < 0 then the parabola opens down.

How do we know if our vertex is a maximum or a minimum?

- If a > 0 then the parabola opens up, Remember a > 0 means a is positive It's a "smile" parabola, so vertex is minimum ^(C)
- If a < 0 then the parabola opens down Remember a < 0 means a is negative It's a "frown" parabola, so vertex is maximum 8

Musical Chairs Notes p. 18-19 (at back of Notes Packet) No calculators allowed!

*You will be put in groups and I will tell you where to start

*Once you are finished with your first question, rotate to the next question on your right (clockwise)

$y = x^2 + 4x + 3$

$y = 2x^2 + 2x$

$y = -x^2 - 2x + 8$

$y = 2x^2 + 6x + 4$

$y = -2x^2 + 2x + 4$

Homework

- Packet p. 4
- Study for Quiz!

