## Unit 2 Day 3

## Finding Extrema of Quadratic Functions

## Warm Up

1. Factor the following. Then solve.
a. $x^{2}-5 x+50=0$ prime
b. $x^{2}+3 x=10 \quad$ Factors: $(x+5)(x-2)=0$ Solutions: $x=-5,2$
c. $2 x^{2}+7 x=-3$ Factors: $(x+3)(2 x+1)=0$

Solutions: $\quad x=-3,-1 / 2$
2. Factor to solve the following:
a. $x^{2}+2 x-35=0(x+7)(x-5)=0$

$$
x=-7,5
$$

b. $2 x^{2}+x=3$
$(2 x+3)(x-1)=0$

$$
x=-3 / 2,1
$$

c. $3 x^{2}+10 x=8 \quad(x+4)(3 x-2)=0$

$$
x=-4,2 / 3
$$

## Packet Homework Answers YOU ONLY HAD EVENS)

$$
\begin{array}{ll}
\text { 1.) } n=2 / 3,-1 / 4 & \text { 6.) } n=-3,-6 \\
\text { 2.) } m=0,3 & \text { 7.) } v=-6,1 \\
\text { 3.) } n=1 / 5,-1 & \text { 8.) } k=-2 \quad \text { (double root) } \\
\text { 4.) } n=1 / 2,8 & \text { 9.) } v=4,3 \\
\text { 5.) } k=3,8 & \text { 10.) } n=2,-8
\end{array}
$$

## Packet Homework Answers

$$
\begin{array}{ll}
\text { 11.) } r=-1,-2 & \text { 18.) } x=4 / 7,7 / 5 \\
\text { 12.) } b=-2,1 & \text { 19) } x=0,4 \\
\text { 13.) } n=7,-1 / 2 & \text { 20) } x=0,-2,-5 \\
\text { 14.) } x=4,-4 / 3 & \text { 21) } x=2 \sqrt{14},-2 \sqrt{14} \\
\text { 15.) } n=7,1 / 8 & \text { 22) } x=4 i,-4 i \\
\text { 16.) } n=-4 / 7,-6 & \text { 23) } x=6 \sqrt{2},-6 \sqrt{2} \\
\text { 17.) } a=-5 / 7,-5 & \text { 24) } x=3 i,-3 i
\end{array}
$$

## Notes p. 6 Answers

$$
\begin{array}{cc}
\text { 1. } \begin{array}{cc}
x^{2}+5 x-24=0 & \text { 4. } 4 x^{2}+3 x=0 \\
x=-8,3 & x=0,-3 / 4
\end{array} \\
\text { 2. } x^{2}-3 x-28=0 & 5.4 x^{2}+7 x-2=0 \\
x=7,-4 & x=1 / 4,-2 \\
\text { 3. } 3 x^{2}+16 x-12=0 & 6.9 x^{2}+30 x+24=0 \\
x=-6,2 / 3 & x=-4 / 3,-2 \\
\text { 7. } 24 x^{2}+132 x=0 & x=0,-11 / 2
\end{array}
$$

Notes p. 6 Answers

$$
\text { 8. } \begin{array}{r}
x^{2}=81 \\
x=9,-9
\end{array}
$$

$$
\begin{gathered}
\text { 11. } 5 x^{2}+5=0 \\
x=i,-i
\end{gathered}
$$

9. $x^{2}=25$

$$
\text { 12. } 6 x^{2}-72=0
$$

$$
x=5,-5
$$

$$
x= \pm \sqrt{12}= \pm 2 \sqrt{3}
$$

$10.5 x^{2}-20=0$

$$
x=2,-2
$$

13. $3 x^{2}-9=0$

$$
x=\sqrt{3},-\sqrt{3}
$$

$$
\text { 14. } 2 x^{2}+72=0
$$

$$
x=6 i,-6 i
$$

## Homework

- Packet p. 4 - Study for Quiz!


## Finding Extrema using Zeros

Notes p. 7-8

## HINT: for the graph on p. 8, you must use different units for each axis!

## Notes p. 7- Check your answers!

Given the following trinomials, factor each to find the zeros:

$$
\text { 1. } x^{2}+8 x+15=0 \quad \text { 2. } x^{2}-13 x+42=0 \quad \text { 3. } x^{2}+2 x-24=0
$$

| Polynomial | Factors | Zeros | Average of the Zeros |
| :---: | :---: | :---: | :---: |
| $x^{2}+8 x+15=0$ | $(x+3)(x+5)=0$ | $(-3,0),(-5,0)$ | -4 |
| $x^{2}-13 x+42=0$ | $(x-7)(x-6)=0$ | $(7,0),(6,0)$ | 6.5 |
| $x^{2}+2 x-24=0$ | $(x+6)(x-4)=0$ | $(-6,0),(4,0)$ | -1 |

## Notes p. 7

$$
\begin{aligned}
& x^{2}-2 x-35=0 \\
& (x+5)(x-7)=0 \\
& x+5=0 \quad x-7=0 \\
& x=-5, x=7 \\
& \frac{-5+7}{2}=1 \\
& \quad x=1
\end{aligned}
$$

- To find the vertex
(the maximum or the minimum):
- To find the zeros:
- Set the expression $=0$ first!
- Factor
- Set each factor $=0$ and solve!
-Average the zeros to find the $x$-value.
- Substitute the $x$-value into the original polynomial to find $y$-value Our $x$ - value for the minimum was $x=1$. So we'll substitute the 1 in for $x$ in our original polynomial.
$(1)^{2}-2(1)-35=1-2-35=-36$
So our vertex, or minimum, is $(1,-36)$

To find a fourth point, substitute $x=0$ into the polynomial.

$$
(0)^{2}-2(0)-35=-35
$$

$$
\text { Y-intercept }=(0,-35)
$$

Graph the four points from above with a smooth curve.
Remember to plot
*the zeros $(-5,0)$ and $(7,0)$
*the vertex (1, -36)
*the $y$-intercept ( $0,-35$ )
*a $5^{\text {th }}$ point -> see below!
Use your fourth point AND your knowledge of reflections \& symmetry from Unit 1 for a fifth point.


HINT: for the graph, you must use different units for each axis! (like 2 on the $x$-axis, 10 on the $y$-axis)

Without using a calculator, these steps will make sketching a graph much easier!

What appears to be the line of symmetry on the graph?

$$
x=1
$$

*Axis of symmetry: a line that divides a parabola into 2 parts that are mirror images
(can be abbreviated A.o.S.)

**It's a line...so remember to write a line equation NOT just a number!

How do we know if our vertex is a maximum or a minimum?

- Remember, a minimum is the lowest point on a graph.
- A maximum is the highest point on a graph.


## Axis of Symmetry

1. Write your equation in Standard Form: $y=a x^{2}+b x+c$
2. Find values of $\mathrm{a}, \mathrm{b}$, and c and use formula: $\quad x=\frac{-b}{2 a}$

Example: $y=x^{2}-2 x-35$, so $\mathrm{a}=1, \mathrm{~b}=-2$, and $\mathrm{c}=-35$.
Then use $x=\frac{-b}{2 a}=\frac{-(-2)}{2(1)} \quad$ Axis of Symmetry is $\mathrm{x}=1$. *Don't forget to substitute this $x$-value into the original equation to find the $y$-value of the vertex!

## Let's try another one: Graph $y=x^{2}+2 x-8$

| Polynomial | in-ercept | zeros | Vertex |
| :---: | :---: | :---: | :---: |
| $x^{2}+2 x-8$ | $(0,-8)$ | $(-4,0)$ | $(-1,-9)$ |
|  |  | $(2,0)$ |  |

Is the vertex of $y=x^{2}+2 x-8$ a minimum or maximum? minimum
What is the Axis of Symmetry?

$$
x=-1
$$

## Key Details: (Notes p.8)

To write zeros as x-intercepts, write a coordinate pair. What should the $y$-value be for an $x$-intercept?
Zero! ©

For a $4^{\text {th }}$ and $5^{\text {th }}$ point, use the $y$-intercept and the " $y$-intercept mirror" (the reflection of the $y$-intercept over the axis of symmetry)

Always graph AT LEAST 5 points and make a smooth curve! Pick other points besides our typical 5 points, if needed.

## Direction of parabolas discovery

Notes p. 8
Check your answers with your partner
THEN discuss patterns. ©)

## Notes p. 8 ANSWERS

Function

1. $y=x^{2}+3 x+4$
2. $y=x^{2}+3 x-4$
3. $y=-x^{2}+3 x+4$
4. $y=x^{2}-4$
5. $y=-x^{2}+4$
6. $y=-x^{2}-4$
7. $y=-x^{2}+3 x$
8. $y=x^{2}-5 x-2$
9. $y=-x^{2}-5 x-2$

Parabola opens up or down?
Up
Up
Down
Up
Down
Down
Down
Up
Down

## Summary!

What determines if the parabola opens up or down??
If $a>0$ then the parabola opens up
If $a<0$ then the parabola opens down.

How do we know if our vertex is a maximum or a minimum?

- If $\mathrm{a}>0$ then the parabola opens up,

Remember $a>0$ means $a$ is positive
It's a "smile" parabola, so vertex is minimum ()

- If $\mathrm{a}<0$ then the parabola opens down

Remember a<0 means a is negative
It's a "frown" parabola, so vertex is maximum ( )


Musical Chairs Notes p. 18-19
(at back of Notes Packet)
No calculators allowed!
*You will be put in groups and I will tell you where to start
*Once you are finished with your first question, rotate to the next question on your right (clockwise)

## Musical Chairs \#1

$y=x^{2}+4 x+3$

## Musical Chairs \#2



## Musical Chairs \#3

$y=-x^{2}-2 x+8$

## Musical Chairs \#4

$y=2 x^{2}+6 x+4$

## Musical Chairs \#5

$y=-2 x^{2}+2 x+4$

## Homework

- Packet p. 4 - Study for Quiz!

