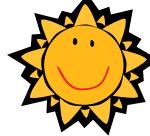
Unit 2 Day 11

Quadratic Inequalities & Systems

Warm Up



12. Given the following functions, specifically describe the transformation from the identity function $y = x^2$ a. $y = (x+3)^2 - 7$ b. $y = 5x^2 + 12$ c. $y = \frac{1}{2}(x-2)^2 + 4$

- 13. Application Practice: The sum of two numbers is 21. The sum of the squares of the numbers is 305. What is the product of the two numbers?
- 14. A Science Olympiad team is having a competition for who can pick an item that will hit the ground the fastest from a 45 ft building. Jenny picked a hockey puck creating a function of y = $-16x^2 + 45$. How many seconds has the hockey puck been in the air when it is 1 foot away from hitting the ground?

Factor completely then solve:

15. $32x^4 - 162 = 0$ 16. $6x^3 - 33x^2 - 18x = 0$

12. Given the following functions, specifically describe the transformation from the identity function $y = x^2$

a.y = (x+3)² - 7 Translate 3 units left and 7 units down.

b.y = 5x² + 12 Translate 12 units up and vertical stretch by a factor of 5

$$c.y = \frac{1}{2}(x - 2)^2 + 4$$

Translate 2 units right and 4 units up. Vertical compression by a factor of $\frac{1}{2}$.

13. Application Practice: The sum of two numbers is 21. The sum of the squares of the numbers is 305. What is the product of the two numbers?

x + y = 21 $x^{2} + y^{2} = 305$ $x^{2} + (-x + 21)^{2} = 305$ $x^{2} + (-x + 21)(-x + 21) = 305$ $x^{2} + x^{2} - 42x + 441 = 305$ $2x^{2} - 42x + 136 = 0$ $2(x^{2} - 21x + 68) = 0$ 2(x - 17)(x - 4) = 0

17*4 = 68

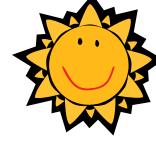
Did you have trouble doing this one by hand? We'll write steps in our notes today! ③

14. A Science Olympiad team is having a competition for who can pick an item that will hit the ground the fastest from a 45 ft building. Jenny picked a hockey puck creating a function of $y = -16x^2 + 45$. How many seconds has the hockey puck been in the air when it is 1 foot away from hitting the ground? We are looking for the x-value, when the y-value is 1. In other words, find x when the coordinate point is (x, 1). If we know y=1, then we can graph this line too.

Find the intersection to get the x.

You get (1.65, 1), so the hockey puck is in the air for <u>1.65</u> <u>seconds.</u>

Factor completely then solve: 15. $32x^4 - 162$ $2(16x^4 - 81)$ $2(4x^2 - 9)(4x^2 + 9)$ Factors: $2(2x + 3)(2x - 3)(4x^2 + 9)$ Solutions: $x = -3/2, 3/2, \pm 3i/2$


16.
$$6x^3 - 33x^2 - 18x$$

$$3x(2x^{2} - 11x - 6)$$

$$3x[2x^{2} - 12x + 1x - 6]$$

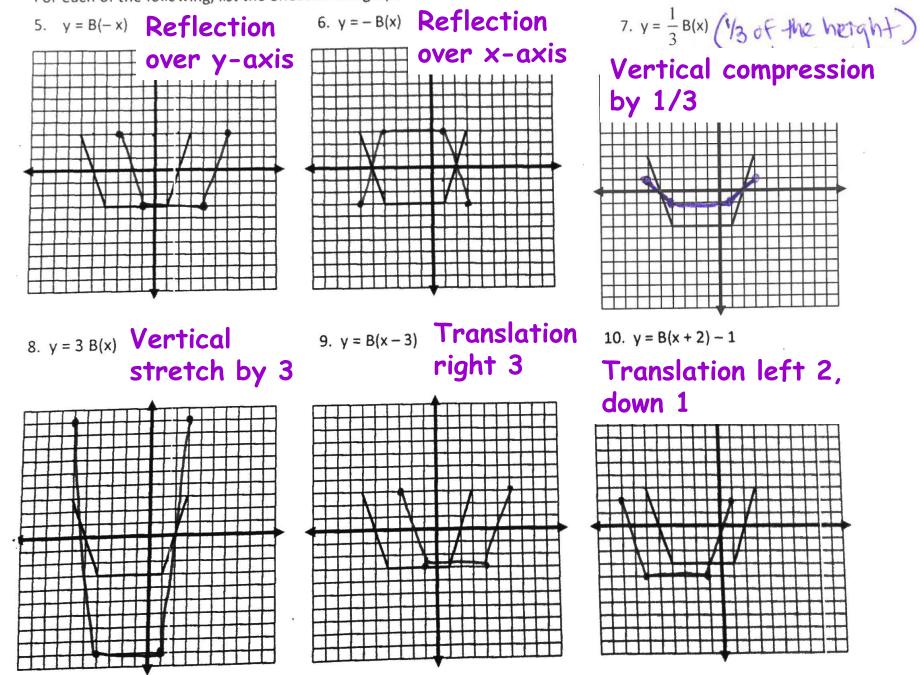
$$3x[2x(x - 6) + 1(x - 6)]$$
Factors: $3x(2x + 1)(x - 6)$
Solutions: $x = 0, -1/2, 6$

6

Homework Page 15

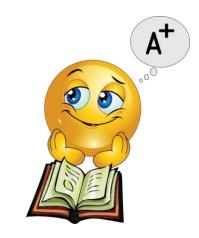
- 1. Translate Up 5
- 2. Translate Left 2
- 3. Translate to the right 9
- 4. Reflect over the x-axis, vertical stretch by 4
- 5. Translate down 3
- 6. Vertical compression by 1/3
- 7. Translate left 2, and down 3
- 8. Translate right 4, vertical stretch by 2

Homework Page 15


- 9. Translate up 1, reflect over the x-axis, dilation vertical compression by 1/2
- 10. Translate right 4, reflect over the x-axis, translate up 2
- 11. Translate left 2, vertical compression by 2/5, translate up 1.
- 12. Translate right 1, vertical stretch by 3, translate down 2.
- 13. Vertex Form: $g(x) = (x-3)^2+6$ Standard From: $g(x) = x^2-6x+15$

Homework Page 16

- 1. (-6,3) (-4,-3) (1,-3) (3,3)
- 2. No, just key points.
- **3.** $\{x \mid -6 \le x \le 3\}$


4. $\{y \mid -3 \le y \le 3\}$

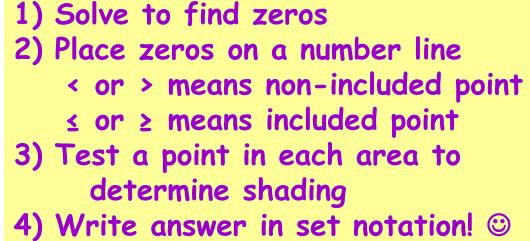
For each of the following, list the effect on the graph of Bowl and then graph the new function.

Homework

- Packet Page 17 Odds and #2, 8
- Packet p. 18 & 19 ALL
- Check Tonight's HW Answers on Bboard
- Remember that you must show algebraic work to receive credit! Complete on other paper if needed!

BUT ALSO – it is not just a good time, but a smart time to start studying. To start reviewing, work on the review homework
 Pages 20-24. It is not due until test day but it is good to start looking at them now!!!! I mean it!

Notes: Solving and Graphing Quadratic Inequalities & Systems


Get out a separate piece of paper to show work!!

Day 11

Solving Quadratic Inequalities Notes p. 45

Example 1: Solve $0 > x^2 - 6x - 7$

0 = (x - 7)(x + 1)Zeroes: x = 7 and x = -1

<u>Steps:</u>

Test a point in each region: $0 > (-2)^2 - 6(-2) - 7$ $0 > (0)^2 - 6(0) - 7$ $0 \ge 9$ (Do not shade) 0 > -7 (Shade)

 $0 > (8)^2 - 6(8) - 7$ $0 \ge 9$ (Do not shade)

Answer: $\{x \mid -1 < x < 7\}$

Solving Quadratic Inequalities

Example 3: Solve $x^2 - x - 12 \ge 0$

 $\{x \mid x \leq -3 \text{ or } x \geq 4\}$

Example 4: Solve $b^2 \ge 10b - 25$

All real numbers

You Try! Solving Quadratic Inequalities

Example 2: Solve $x^2 + 9x + 14 < 0$ {x| -7 < x < -2}

- Example 5: Solve $2x^2 + 5x < 12$
 - $\{x | -4 < x < -3/2\}$
- Example 6: Solve $n^2 \le 3$ $\{x \mid -\sqrt{3} \le x \le \sqrt{3}\}$

Linear and Quadratic Systems!

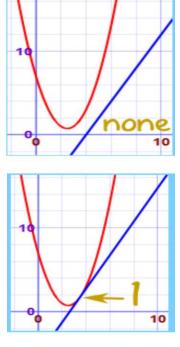
(not in notes....just listen 🙂)

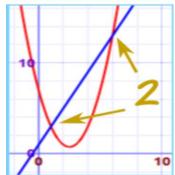
- y = 5x + 6
- y = x + 6

This is a System of Linear Equations. Remember, we reviewed how to solve these Algebraically earlier in the course!

When we solve a system of linear equations, what kind of solution do we get? Remember there are 3 possibilities

- * A coordinate pair! A point!! ③
- * No solutions (if the lines never intersect)
- * Infinite solutions (if the lines coincide)
- $y = x^2 + 5x + 6$ This is a System of Linear and
Quadratic Equations.y = x + 6More info in your notes next ->


Solving Linear-Quadratic Systems:


With a Linear-Quadratic System, there are three possible cases:

<u>No</u> real solution (when the line and the quadratic <u>never intersect</u>)

 <u>One</u> real solution (happens when <u>the line</u> just touches the quadratic)

<u>Two</u> real solutions (happens when the line and the quadratic intersect
 <u>twice</u>)

Linear and Quadratic Systems can be solved Graphically and Algebraically!

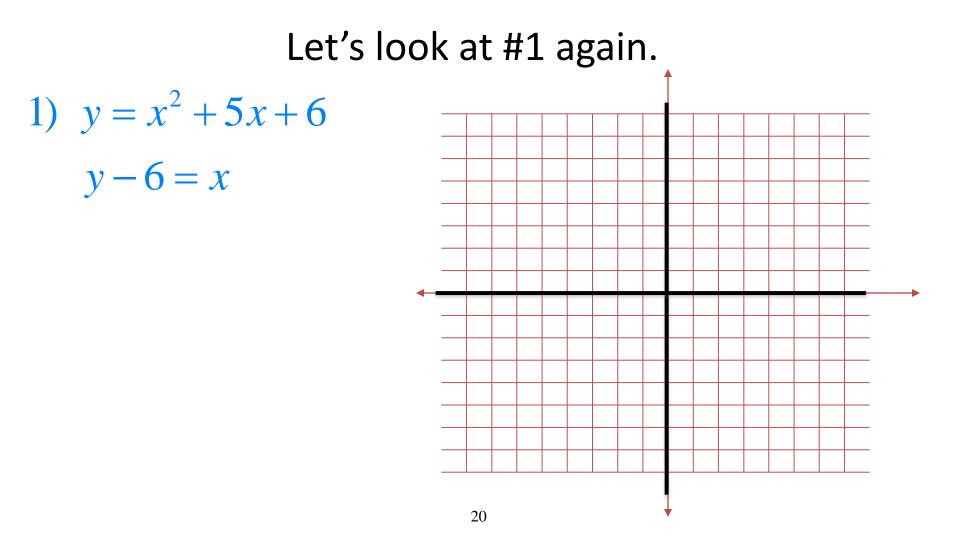
1)
$$y = x^2 + 5x + 6$$
$$y - 6 = x$$

As an Honors Student, you need to know how to solve Algebraically! Let's see the steps!! ->

Solving Linear and Quadratic Systems! Solving Algebraically! ③

1) $y = x^2 + 5x + 6$

$$y - 6 = x$$

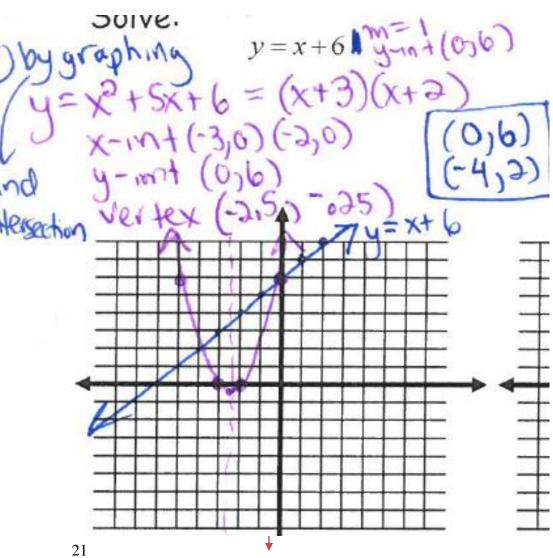

Steps:

- 1) Set the linear equation = y (if this is not done for you already)
- Since both equations are = y, substitute one equation into the other. Then solve for x.
- 3) Substitute the x-values back in to find the y-values
- 4) Your solutions are coordinate points! ⁽ⁱ⁾

There are more ways to solve as well!!

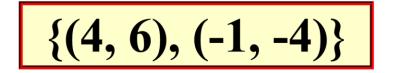
Solving Linear and Quadratic Systems!

These systems can also be solved graphically.



Solving Linear and Quadratic Systems!

These systems can also be solved graphically.


Let's look at #1 again.

1) $y = x^2 + 5x + 6$ y - 6 = x

You Try! Solve Algebraically! ③

 $\begin{array}{l} 2) \quad y = x^2 - x - 6 \\ y - 2x = -2 \end{array}$

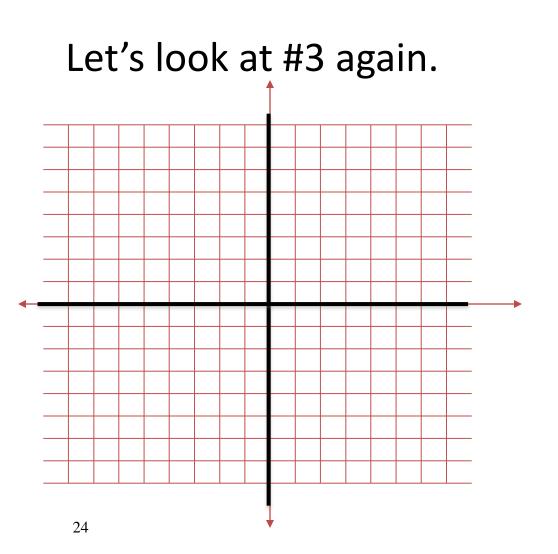
Linear and Quadratic Systems! As an Honors Student, you need to know how to solve Algebraically! ⓒ

3) $x^2 + y^2 = 25$ 4y = 3x

<u>The Same Steps As Before @:</u>

1) Set the linear equation = y (if this is not done for you already)

2) Since both equations are = y, substitute one equation into the other. Then solve for x.

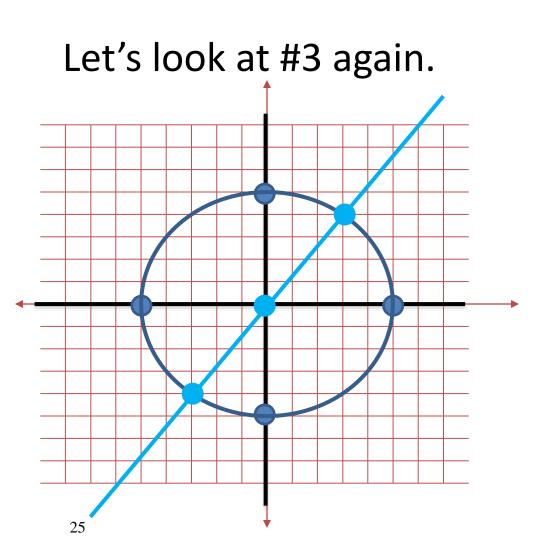

- 3) Substitute the x-values back in to find the y-values
- 4) Your solutions are coordinate points! ⁽³⁾

There are more ways to solve as well!!

Solving Linear and Quadratic Systems! These systems can also be solved graphically.

3) $x^{2} + y^{2} = 25$ 4y = 3x

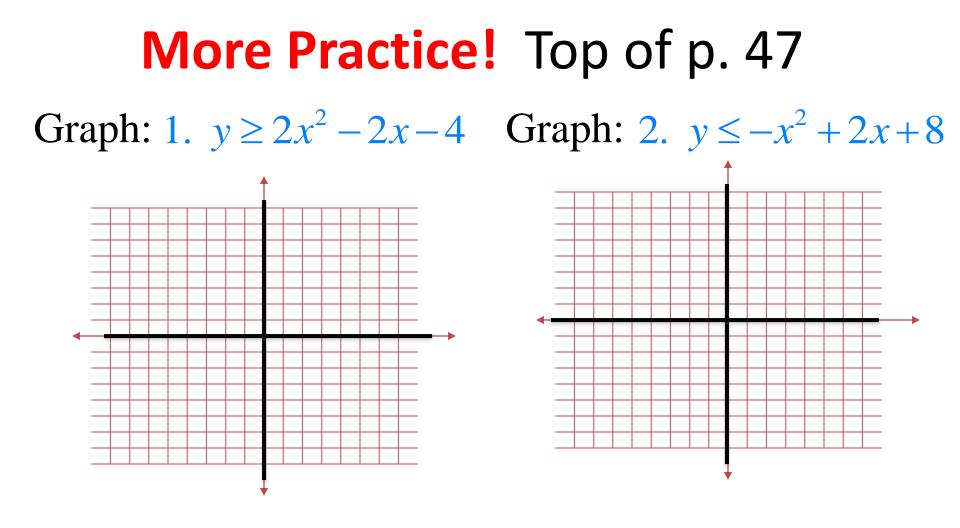
This quadratic is an equation of a circle.



Solving Linear and Quadratic Systems! These systems can also be solved graphically.

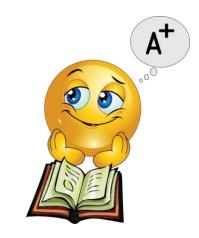
3) $x^{2} + y^{2} = 25$ 4y = 3x


This quadratic is an equation of a circle.


 $\{(4, 3), (-4, -3)\}$

You Try: Solve Algebraically! ③

4) $x^{2} + y^{2} = 26$ x - y = 6



Solve: 3. $x^2 - 3x - 10 < 0$ Solve: 4. $x^2 + 2x \ge 8$

Homework

- Packet Page 17 Odds and #2, 8
- Packet p. 18 & 19 ALL
- Check Tonight's HW Answers on Bboard
- Remember that you must show algebraic work to receive credit! Complete on other paper if needed!

BUT ALSO – it is not just a good time, but a smart time to start studying. To start reviewing, work on the review homework
 Pages 20-24. It is not due until test day but it is good to start looking at them now!!!! I mean it!

Applications Practice Musical Chairs Around the Room Activity OR. Transformations of Functions Foldable