Unit 2 Day 11

Quadratic Inequalities \& Systems

Warm Up

12. Given the following functions, specifically describe the transformation from the identity function $y=x^{2}$
a. $y=(x+3)^{2}-7$
b. $y=5 x^{2}+12$
c. $y=\frac{1}{2}(x-2)^{2}+4$
13. Application Practice: The sum of two numbers is 21 . The sum of the squares of the numbers is 305 . What is the product of the two numbers?
14. A Science Olympiad team is having a competition for who can pick an item that will hit the ground the fastest from a 45 ft building. Jenny picked a hockey puck creating a function of $y=$ $-16 x^{2}+45$. How many seconds has the hockey puck been in the air when it is 1 foot away from hitting the ground?

Factor completely then solve:
15. $32 x^{4}-162=0$
16. $6 x^{3}-33 x^{2}-18 x=0$

Warm Up ANSWERS

12. Given the following functions, specifically describe the transformation from the identity function $y=x^{2}$
a. $y=(x+3)^{2}-7$

Translate 3 units left and 7 units down.
b. $y=5 x^{2}+12$

Translate 12 units up and vertical stretch by a factor of 5
c. $y=\frac{1}{2}(x-2)^{2}+4$

Translate 2 units right and 4 units up.
Vertical compression by a factor of $\frac{1}{2}$.

Warm Up ANSWERS

13. Application Practice: The sum of two numbers is 24 The sum of the squares of the numbers is 305 . What is the product of the two numbers?

$$
\begin{array}{cc}
x+y=21 & y=-x+21 \\
x^{2}+y^{2}=305 & x^{2}+(-x+21)^{2}=305 \\
x^{2}+(-x+21)(-x+21)=305 \\
x^{2}+x^{2}-42 x+441=305 \\
2 x^{2}-42 x+136=0 \\
2\left(x^{2}-21 x+68\right)=0 \\
\mathbf{x}=\mathbf{1 7} \text { and } \mathbf{x}=\mathbf{4} & 2(x-17)(x-4)=0 \\
\mathbf{1 7 * 4}=\mathbf{6 8} & \text { Did you have trouble doing this one by hand? } \\
\text { We'll write steps in our notes today! :() }
\end{array}
$$

Warm Up ANSWERS

14. A Science Olympiad team is having a competition for who can pick an item that will hit the ground the fastest from a 45 ft building. Jenny picked a hockey puck creating a function of $y=-16 x^{2}+45$. How many seconds has the hockey puck been in the air when it is 1 foot away from hitting the ground?
We are looking for the x-value, when the y-value is 1 . In other words, find x when the coordinate point is ($x, 1$). If we know $y=1$, then we can graph this line too.

Find the intersection to get the x.
You get $(1.65,1)$, so the hockey puck is in the air for $\underline{1.65}$ seconds.

Warm Up ANSWERS

Factor completely then solve:
15. $32 x^{4}-162$

$$
\begin{gathered}
2\left(16 x^{4}-81\right) \\
2\left(4 x^{2}-9\right)\left(4 x^{2}+9\right)
\end{gathered}
$$

Factors: $2(2 x+3)(2 x-3)\left(4 x^{2}+9\right)$
Solutions: $\quad x=-3 / 2,3 / 2, \pm 3 i / 2$
16. $6 x^{3}-33 x^{2}-18 x$

$$
\begin{aligned}
& \quad 3 x\left(2 x^{2}-11 x-6\right) \\
& 3 x\left[2 x^{2}-12 x+1 x-6\right] \\
& 3 x[2 x(x-6)+1(x-6)] \\
& \text { Factors: } 3 x(2 x+1)(x-6) \\
& \text { Solutions: } \quad x=0,-1 / 2,6
\end{aligned}
$$

Homework Page 15

1. Translate Up 5
2. Translate Left 2
3. Translate to the right 9
4. Reflect over the x-axis, vertical stretch by 4
5. Translate down 3
6. Vertical compression by $1 / 3$
7. Translate left 2, and down 3
8. Translate right 4, vertical stretch by 2

Homework Page 15

9. Translate up 1, reflect over the x-axis, dilation vertical compression by $1 / 2$
10. Translate right 4 , reflect over the x-axis, translate up 2
11. Translate left 2 , vertical compression by $2 / 5$, translate up 1.
12. Translate right 1 , vertical stretch by 3 , translate down 2.
13. Vertex Form: $g(x)=(x-3)^{2}+6$

Standard From: $g(x)=x^{2}-6 x+15$

Homework Page 16

1. $(-6,3)(-4,-3)(1,-3)(3,3)$
2. No, just key points.
3. $\{x \mid-6 \leq x \leq 3\}$
4. $\{y \mid-3 \leq y \leq 3\}$

For each of the follcwing, list the effect on the graph of Bowl and then graph the new function.
5. $y=B(-x)$ Reflection

8. $y=3 B(x)$ Vertical

 stretch by 3
6. $y=-B(x)$ Reflection

9. $y=B(x-3)$ Translation right 3
7. $y=\frac{1}{3} B(x)$ ($1 / 3$ of the height)

Vertical compression

 by $1 / 3$

Translation left 2, down 1

Homework

- Packet Page 17 Odds and \#2, 8
- Packet p. 18 \& 19 ALL
- Check Tonight's HW Answers on Bboard
- Remember that you must show algebraic work to receive credit! Complete on other paper if needed!

- BUT ALSO - it is not just a good time, but a smart time to start studying. To start reviewing, work on the review homework Pages 20-24. It is not due until test day but it is good to start looking at them now!!!! I mean it!

Notes: Solving and Graphing Quadratic Inequalities \& Systems

Get out a separate piece of paper to show work!!

Day 11

Solving Quadratic Inequalities Notes p. 45

Example 1: Solve
$0>x^{2}-6 x-7$
$0=(x-7)(x+1)$
Zeroes: $x=7$ and $x=-1$

Test a point in each region:
$0>(-2)^{2}-6(-2)-7$
$0>(0)^{2}-6(0)-7$
$0>(8)^{2}-6(8)-7$
$0 \ngtr 9$ (Do not shade)
$0>-7$ (Shade)
$0>9$ (Do not shade)

Answer: $\{\mathbf{x} \mid-1<\mathbf{x}<7\}$

Solving Quadratic Inequalities

Example 3: Solve $x^{2}-x-12 \geq 0$ $\{x \mid x \leq-3$ or $x \geq 4\}$

Example 4: Solve $b^{2} \geq 10 b-25$
All real numbers

You Try! Solving Quadratic Inequalities

Example 2: Solve $x^{2}+9 x+14<0$

$$
\{x \mid-7<x<-2\}
$$

Example 5: Solve $2 x^{2}+5 x<12$

$$
\{x \mid-4<x<-3 / 2\}
$$

Example 6: Solve $n^{2} \leq 3$

$$
\{x \mid-\sqrt{3} \leq x \leq \sqrt{3}\}
$$

Linear and Quadratic Systems!

(not in notes....just listen ())

$$
\begin{aligned}
& y=5 x+6 \\
& y=x+6
\end{aligned}
$$

This is a System of Linear Equations. Remember, we reviewed how to solve these Algebraically earlier in the course!

When we solve a system of linear equations, what kind of solution do we get? Remember there are 3 possibilities

* A coordinate pair! A point!! ©
* No solutions (if the lines never intersect)
* Infinite solutions (if the lines coincide)

$$
\begin{gathered}
y=x^{2}+5 x+6 \\
y=x+6
\end{gathered}
$$

This is a System of Linear and
Quadratic Equations. More info in your notes next ->

Solving Linear-Quadratic Systems:

With a Linear-Quadratic System, there are three possible cases:

- No real solution (when the line and the quadratic never intersect)

- One real solution (happens when the line just touches the quadratic)

- Two real solutions (happens when the line and the quadratic intersect twice)

Linear and Quadratic Systems can be solved Graphically and Algebraically!

$$
\text { 1) } \begin{aligned}
& y=x^{2}+5 x+6 \\
& y-6=x
\end{aligned}
$$

As an Honors Student, you need to know how to solve Algebraically! ;)

Let's see the steps!! ->

Solving Linear and Quadratic Systems! Solving Algebraically! ©

$$
\text { 1) } \begin{aligned}
& y=x^{2}+5 x+6 \\
& y-6=x
\end{aligned}
$$

Steps:

1) Set the linear equation $=y$ (if this is not done for you already)
2) Since both equations are $=y$. substitute one equation into the other. Then solve for x.
3) Substitute the x-values back in to find the y-values
4) Your solutions are coordinate points! (:)

There are more ways to solve as well!!

$$
(0,6)(-4,2)
$$

Solving Linear and Quadratic Systems!

 These systems can also be solved graphically. Let's look at \#1 again.1) $y=x^{2}+5 x+6$

$$
y-6=x
$$

Solving Linear and Quadratic Systems!

These systems can also be solved graphically. Let's look at \#1 again.

1) $y=x^{2}+5 x+6$

$$
y-6=x
$$

You Try! Solve Algebraically! ©

$$
\text { 2) } \begin{aligned}
& y=x^{2}-x-6 \\
& y-2 x=-2
\end{aligned}
$$

Linear and Quadratic Systems!

As an Honors Student, you need to know how to solve Algebraically! ©
3) $x^{2}+y^{2}=25$
$4 y=3 x$

The Same Steps As Before ():

1) Set the linear equation $=y$ (if this is not done for you already)
2) Since both equations are $=y$, substitute one equation into the other. Then solve for x.
3) Substitute the x-values back in to find the y-values
4) Your solutions are coordinate points! ()

There are more ways to solve as well!!
$\{(4,3),(-4,-3)\}$

Solving Linear and Quadratic Systems! These systems can also be solved graphically.
3) $x^{2}+y^{2}=25$ $4 y=3 x$

This quadratic is an equation of a circle.

Let's look at \#3 again.

Solving Linear and Quadratic Systems!

 These systems can also be solved graphically.3) $x^{2}+y^{2}=25$ $4 y=3 x$

This quadratic is an equation of a circle.
$\{(4,3),(-4,-3)\}$

Let's look at \#3 again.

You Try: Solve Algebraically! :)

$$
\text { 4) } \begin{aligned}
& x^{2}+y^{2}=26 \\
& x-y=6
\end{aligned}
$$

$\{(5,-1),(1,-5)\}$

More Practice! Top of p. 47

Graph: 1. $y \geq 2 x^{2}-2 x-4$

Solve: 3. $x^{2}-3 x-10<0$

Graph: 2. $y \leq-x^{2}+2 x+8$

Solve: $4 . x^{2}+2 x \geq 8$

Homework

- Packet Page 17 Odds and \#2, 8
- Packet p. 18 \& 19 ALL
- Check Tonight's HW Answers on Bboard
- Remember that you must show algebraic work to receive credit! Complete on other paper if needed!

- BUT ALSO - it is not just a good time, but a smart time to start studying. To start reviewing, work on the review homework Pages 20-24. It is not due until test day but it is good to start looking at them now!!!! I mean it!

Applications Practice

Musical Chairs
 Around the Room Activity

OR

Transformations of Functions Foldable

