Unit 2 Day 10

FRED Functions - Part 2

Warm Up

Graphing quadratic systems -> Graph both quadratics, then darkly shade the area of overlap.

1) $y \leq-x^{2}-x+12$
$y \geq x^{2}+7 x+12$

Factor completely
3) $81 x^{4}-16$
2) $y<-x^{2}+4 x-3$
$y>x^{2}+6 x+8$

4) $12 x^{2}+26 x-10$

Graph both quadratics, Warm Up Answers then darkly shade the area of overlap.

1) $y \leq-x^{2}-x+12$
2) $y<-x^{2}+4 x-3$

$$
y \geq x^{2}+7 x+12
$$

$$
y>x^{2}+6 x+8
$$

$(-4,0)$ and $(0,12)$ aré parabola's intersections

No Solution BUT the dark area is the solution!! ©

Warm Up Answers

Factor completely
3) $81 x^{4}-16$

$$
\begin{gathered}
\left(9 x^{2}-4\right)\left(9 x^{2}+4\right) \\
(3 x+2)(3 x-2)\left(9 x^{2}+4\right)
\end{gathered}
$$

4) $12 x^{2}+26 x-10$

$$
\begin{aligned}
& 2\left(6 x^{2}+13 x-5\right) \\
& 2\left[6 x^{2}+15 x-2 x-5\right] \\
& 2[3 x(2 x+5)-1(2 x+5)] \\
& 2(3 x-1)(2 x+5)
\end{aligned}
$$

Homework Answers - Packet p. 13

1. Graph: $y=G(x)-6$.

2. Graph: $y=G(x+6)$

3. Graph: $\mathrm{y}=\mathrm{G}(\mathrm{x}+2)+5$

4. Graph: $y=G(x-4)-5$

Homework Answers - Packet p. 13

Equation	Effect to Harry's graph
1. $y=F(x)+82$	Translate up 82
2. $y=F(x-13)$	Translate right 13
3. $y=F(x+9)$	Translate left 9
4. $y=F(x)-55$	Translate down 55
5. $y=F(x-25)+11$	Translate right 25, up 11

Homework Answers - Packet p. 14

$$
\begin{array}{|c|c|}
\hline \text { Equation } & \text { Effect to Harry's graph } \\
\hline y=F(x+51) & \text { Translate left 51 } \\
\hline y=F(x)-76 & \text { Translate down 76 } \\
\hline y=F(x-31) & \text { Translate right 31 } \\
\hline y=F(x-8)-54 & \text { Translate right 8 and down 54 } \\
\hline y=F(x+100)-12 & \text { Translate down 12 an left 100 } \\
\hline
\end{array}
$$

Homework Answers - Packet p. 14

IV.

1. D: $\{x \mid-1 \leq x \leq 3\}$

R: $\{y \mid-5 \leq y \leq 3\}$
2. D: $\{x \mid-3 \leq x \leq 5\}$
V.

1. D: $\left\{\begin{array}{c|c}\text { D } & -2 \leq x \leq 2\} \\ \text { R: }\{y & 2 \leq y \leq 6\}\end{array}\right.$
2. $\mathrm{D}:\left\{\begin{array}{l|l}\text { x } & -7 \leq \mathrm{x} \leq-3\} \\ \text { R: }\{\mathrm{y} & -3 \leq \mathrm{y} \leq 1\}\end{array}\right.$

Tonight's Homework: Packet p. 15-16 AND

Finish today's Fred Function Notes through Notes p. 44

Fred Functions Notes p. 39-44

*Work together with your neighbors *Ask Questions as needed! *After you complete a checkpoint, check in to be sure you're on the right track!

III. Checkpoint p. 40

Reflection in the y-axis

Reflection in the x -axis

VI. Checkpoint p. 42

1. Complete each chart below. Each chart starts with the characteristic points of Fred.

\mathbf{x}	$\mathbf{F}(\mathbf{x})$	$\mathbf{3} \mathbf{F}(\mathbf{x})$
-1	1	3
1	-1	-3
2	-1	-3
4	-2	-6

\mathbf{x}	$\mathbf{F}(\mathbf{x})$	$1 / 4 \mathbf{F}(\mathbf{x})$
-1	1	$1 / 4$
1	-1	$-1 / 4$
2	-1	$-1 / 4$
4	-2	$-1 / 2$

2. Compare the $2^{\text {nd }}$ and $3^{\text {rd }}$ columns of each chart above. The $2^{\text {nd }}$ column is the y-value for Fred. Can you make a conjecture about how a coefficient changes the parent graph?

Students will likely say that a coefficient greater than 1 stretches the graph (makes it taller/steeper) and a coefficient less than 1 compresses it (makes it shorter/less steep). This is not fully accurate but will be addressed in the next investigation.

VIII. Checkpoint p. 43

Equation
Example: $y=-5 H(x)$
d. $y=3 H(x)$
e. $y=-2 H(x)$

Reflect over x-axis, vertical stretch by 2
f. $y=1 / 2 H(x)$

Vertical compression by 1/2

VIII. Checkpoint (con't) p. 43

Practice D. 43-44

Part A: The Effect of a

$$
\text { 1. } y=4 x^{2}
$$

Vertex: (0, 0) Shape Change or Shift Change? : Shape What was the change?

Vertical stretch by 4
3. $y=-4 x^{2}$

Vertex: $(0,0)$
Shape Change or Shift Change? : Both What was the change? :

Vertical stretch by 4 and reflection over x-axis
2. $y=\frac{1}{4} x^{2}$

Vertex: $(0,0)$
Shape Change or Shift Change? : Shape What was the change? :
Vertical compression (or horizontal stretch) by $1 / 4$
4. $y=-\frac{1}{4} x^{2}$

Vertex: $(0,0)$
Shape Change or Shift Change? : Both
What was the change? :
Vertical compression (or
horizontal stretch) by $1 / 4$ and
16 reflection over x-axis

Part B: The Effect of h

5. $y=(x+2)^{2}$

Vertex: $(-2,0)$
Shape Change or Shift Change? : Shift What was the change?

Translation left 2

$$
\text { 7. } y=-(x+5)^{2}
$$

Vertex: $(-5,0)$
Shape Change or Shift Change? : Shift What was the change? :

Translation left 5 and reflection over x-axis
6. $y=(x-4)^{2}$

Vertex: $(4,0)$
Shape Change or Shift Change? : Shift What was the change? :

Translation right 4
8. $y=-(x-6)^{2}$

Vertex: $(6,0)$
Shape Change or Shift Change? : Shift What was the change? :

Translation right 6 and reflection over x-axis

Part C: The Effect of k

$$
\text { 9. } y=x^{2}+1
$$

Vertex: $(0,1)$
Shape Change or Shift Change? : Shift What was the change?

Translation up 1

$$
\text { 11. } y=-x^{2}+7
$$

Vertex: $(0,7)$
Shape Change or Shift Change? : Shift What was the change? :

Reflection over x-axis and translation up 7

10. $y=x^{2}-2$

Vertex: ($0,-2$)
Shape Change or Shift Change? : Shift What was the change?:

Translation down 2

12. $y=-x^{2}-10$

Vertex: $(0,-10)$
Shape Change or Shift Change? : Shift What was the change? :
Reflection over x-axis and
translation down 10

Tonight's Homework: Packet p. 15-16 AND

Finish today's Fred Function Notes through Notes p. 44

