Day 8: Triangle Congruence

Warm-Up:

1. Create two figures congruent to the one given using two different transformations and describe them.
2. Solve for x.

$$
\frac{x}{x+3}=\frac{x+4}{x-1}
$$

3. If $\triangle C A T \sim \Delta D O G$, find x and y .
$m \angle C=3 x-14$,
$m \angle D=2 x+2 y$,
$m \angle T=3 \mathrm{y}-2 \mathrm{x}$,
$m \angle G=9-3 \mathrm{x}$

Triangle Congruence notes...

have congruent corresponding
("matching") parts - their matching sides and angles.
Naming Congruent Figures
a) Points can be named in any order.
b) Each corresponding vertex must be in the same order for each figure.

C corresponds to R.
$\angle B$ corresponds to $\angle Q$. $\overline{A X}$ corresponds to $\overline{P Y}$. $A \subset B X \cong P R Q Y$

Ex. Figure BCAX is congruent to \qquad .

Example: $\triangle A B C \cong \triangle P Q R$. List the congruent corresponding parts.
(List the corresponding vertices in the same order. List the corresponding sides in the same order.)

| | Corresponding Angles | Corresponding Sides |
| :---: | :---: | :---: | :---: |
| | | |

Be careful! The pictures don't always line up corresponding parts! The congruence statement MUST have them in order! (:)

You Try

$\Delta \mathrm{LMC} \cong \Delta \mathrm{BJK}$

Complete the congruence statements. (Name all congruent angles. Name all congruent sides.)
3. $\overline{L C} \cong$
7. $\angle \mathrm{K} \cong$ \qquad

4. $\overline{K J} \cong$ \qquad
8. $\angle \mathrm{M} \cong$ \qquad
5. $\overline{J B} \cong$ \qquad
9. $\triangle \mathrm{CML} \cong$ \qquad
6. $\angle \mathrm{L} \cong$ \qquad
10. $\Delta \mathrm{KBJ} \cong$ \qquad

Side - Side - Side Postulate (or SSS Postulate)
If \qquad of one triangle are congruent to
\qquad of another triangle, then the 2 triangles are \qquad .

$$
\text { If } \overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F} \text {, and } \overline{A C} \cong \overline{D F} \text {, then } \triangle \mathrm{ABC} \cong
$$

\qquad
Side - Angle - Side Postulate (or SAS Postulate)
If \qquad and the \qquad _ of one
triangle are congruent to \qquad and the \qquad of another triangle, then the 2 triangles are congruent.

If $\overline{A B} \cong \overline{D E}, \angle A \cong \angle D$, and $\overline{A C} \cong \overline{D F}$, then $\triangle \mathrm{BAC} \cong$
Angle - Side - Angle Postulate (or ASA Postulate):
If \qquad and the included side of one triangle are congruent to \qquad and the included side of
 another triangle, then the 2 triangles are \qquad .

If $\overline{A C} \cong \overline{D F}, \angle A \cong \angle D$, and $\angle C \cong \angle F$, then $\triangle \mathrm{ACB} \cong$ \qquad
Angle - Angle - Side Theorem (or AAS Theorem):
If \qquad and a non- included side of one triangle are
congruent to \qquad and a \qquad
 non-included side of another triangle, then the 2 triangles are \qquad .

If $\overline{B C} \cong \overline{E F}, \angle A \cong \angle D$, and $\angle C \cong \angle F$, then $\triangle \mathrm{CAB} \cong$
Hypotenuse-Leg Theorem (or HL Theorem):
If the \qquad and \qquad of one right triangle are congruent to the \qquad and
\qquad of another right triangle, then the triangles are congruent.

If $\overline{A B} \cong \overline{X Y}, \overline{A C} \cong \overline{X Z}$, and $\angle B$ and $\angle Y$ are right angles, then $\triangle \mathrm{ABC} \cong \Delta$

Day 9: Triangle Congruence and Similarity

Warm-Up: Triangles $A B C$ and $P Q R$ are shown below in the coordinate plane:
a. Show that $A B C$ is congruent to $P Q R$ with a reflection followed by a translation.
b. If you reverse the order of your reflection and translation in part (a) does it still map $A B C$ to PQR?

c. Find a second way, different from your work in part (a), to map $A B C$ to $P Q R$ using translations, rotations, and/or reflections.
$\overline{N L}$ and $\overline{M L}$ a similarity statement. Then, find the value of x and the lengths of the segments requested.

Congruence and Similarity Lesson

Review: What are the 4 shortcuts to knowing that two triangles are congruent?

Once we use one of the shortcuts to show that triangles are congruent, we know that the other 3 parts have congruent matches. In Geometry, we state that "corresponding parts of congruent triangles are congruent, or CPCTC."
\#1: \triangle HEY is congruent to \triangle MAN by \qquad .
What other parts of the triangles are congruent by CPCTC?

\#2:

$\triangle C A T \cong$ \qquad by \qquad

THEREFORE:
\qquad by CPCTC
\qquad \cong \qquad by CPCTC
\qquad \cong \qquad by CPCTC

Example: Plans for the location of a telecommunications tower that is to serve three northern suburbs of Milwaukee are shown below. Design specifications indicate the tower should be located so that it is equidistant from the center S, U, and V of each of the suburbs. In the diagram, line $\boldsymbol{\ell}$ is the perpendicular bisector of SU. Line m is the perpendicular bisector of $U V$.
a. Draw line TS and line TU. How can you show that $T S=T U$.
b. Draw line TV on your diagram. Prove that TU= TV.

c. Explain why the tower should be located at point T.

Are the following triangles congruent? Explain.

In the previous example, we needed to use the idea that the three angles of a triangle add to \qquad -

Let's play with this theorem for a bit...
Solve for the missing variables:
1.

2.

3.

4.

Warm-up:

1. Simplify

$$
(x-7)(x+4)
$$

2. Solve for x.

$$
\frac{x}{x+5}=\frac{x+3}{x+13}
$$

$$
d^{2}=(\text { change in } x)^{2}+(\text { change in } y)^{2}
$$

3. Given a triangle with vertices $A(2,5), B(3,6)$ and $C(1,6)$, use the distance formula to decide whether triangle $A B C$ is scalene, isosceles, or equilateral. Show ALL work!!
4. Given $\overline{T S} \| \overline{Q R}$, explain why the triangles are similar and write a similarity statement. Then use $T S=6, P S=x+7, Q R=8$, and $S R=x-1$, to find $P S$ and $P R$.

Midsegments, Isosceles Triangles Notes/Practice

Isosceles and Equilateral Triangles

Isosceles triangles are commonly found in the real world in buildings and bridges.

- The congruent sides of an isosceles triangle are its \qquad .
- The third side is the \qquad .
- The two congruent sides form the \qquad .
- The other two angles are the \qquad
\qquad

Isosceles Triangle Theorem:

If two sides of a triangle are congruent, then the angles opposite those sides are congruent.

Ex. If \qquad \cong \qquad , then \qquad \cong \qquad .

Converse of the Isosceles Triangle Theorem:

If two angles of a triangle are congruent, then the sides opposite those angles are congruent.
Ex. If \qquad \cong \qquad , then \qquad \cong \qquad .

Example: Triangle $A B C$ is isosceles with vertex C. What is the value of x ? What is the measure of each angle?

Corollary to Isosceles Triangle Theorem:

If a triangle is equilateral, then the triangle is equiangular.

Example: Given triangle $A B C$, what is the measure of angle A ?

How would you define the midpoint of a segment?

Midsegment of a triangle (the triangle doesn't have to be isosceles or equilateral)
A midsegment of a triangle is a segment connecting the midpoints of 2 sides. It measures
\qquad the length of the other side and is \qquad to the other side $\overline{D E}$ is a midsegment of $\triangle A B C$

$$
D E=
$$

\qquad and \qquad // \qquad

Example 1: In triangle $A B C, M, J$, and K are midpoints
$A B=$ \qquad $K J=$ \qquad
$B C=$ \qquad

$$
M K=
$$

$A C=$ \qquad
$M J=$ \qquad

Example 2: $A B=10, C D=18$
$B C=$ \qquad $E B=$ \qquad

Example 3: Given $m \angle A=42^{\circ}$,
Find $\mathrm{m} \angle \mathrm{AMN}=$ \qquad
$m \angle A N M=$ \qquad

Example 4: In $\triangle X Y Z, M, N$, and P are midpoints.
The perimeter of $\triangle M N P$ is 60 . Find $X Y$ and $Y Z$.

Practice...Directions: Find the values of the variables. You must show all work to receive full credit. Figures are not drawn to scale.

1. $x=$ \qquad $y=$ \qquad $\mathrm{Z}=$ \qquad

2. $x=$ \qquad

3. $x=$ \qquad

4. $x=$

5. $x=$ \qquad
6. $x=$ \qquad

7. $x=$ \qquad $y=$ \qquad
8. $x=$ \qquad

9. $z=$ \qquad

10. Sadie is designing a kite. The diagonals measure 28 in and 48 in. She wants to decorate the mid-segments of the triangles formed by the diagonals with purple ribbon. How much ribbon must she purchase? Draw a picture! (Hint: Do you remember which sides are congruent on a kite?)

I-
11. $x=$ \qquad
12. $x=\quad y$ \qquad
13. $x=$ \qquad

\qquad

14. Find the perimeter of $\triangle A B C$.

15. One side of the Rock and Roll Hall of Fame is an isosceles triangle made up of smaller triangles based on mid-segments. The length of the base of the building is 229.5 feet. What would the base of the bold triangle be?

Day 11: Segment addition, Angle addition, and Quiz 2

Warm-Up:

1. Multiply. $(x+5)(x+7)$
2. Solve for x.

$$
\frac{x}{x+6}=\frac{x+1}{x-2}
$$

3. Solve for x.

4. Prove or Disprove: Is the triangle with vertices $R(-2,-2), S(1,4)$, and $T(4,-5)$ an equilateral triangle. How do you know?
5. Prove or Disprove: Are two triangles are congruent? $\triangle A B C$ has the vertices $A(-4,1), B(-3,4)$, and $C(-1,1)$. Δ DEF has the vertices $D(2,-3), E(5,-2)$, and $F(2,0)$.
6. Error Analysis: Two students are asked to find the angle measures of $\Delta X Y Z$, given that $\triangle \mathrm{XYZ}$ is isosceles. Their work is shown below. Is either answer correct? Explain your reasoning.

Esteban's Answer
$m \angle \mathrm{Z}=70^{\circ}$. Since an isosceles
triangle has two congruent angles,
$m \angle \mathrm{X}=m \angle \mathrm{Y}=55^{\circ}$

Lesson - Angle Addition, Segment Addition, and Quiz

The word between in Geometry has a special meaning: a point is between two others if all three points are collinear (on the same line) and it is "between" the other two.
Example:

1. Is B between A and C ? \qquad
2. Is D between A and C ? \qquad
\qquad
3. Is E between A and C ?

Segment addition postulate: If three points A, B, and C are collinear and B is between A and C, then \qquad .

Example: If $A B=5$, and $B C=6$, then $A C=$ \qquad

Angle Addition Postulate:

If C is in the interior of $\angle D A B$ then
\qquad
Example: Find $m \angle D A B$, given $m \angle D A C=30^{\circ}$ and $m \angle C A B=35^{\circ}$.

Practice: Segment Addition Postulate

Points A, B and C are collinear. Point B is between A and C. Solve for the requested values.

1. $A C=3 x+3, A B=-1+2 x$, and $B C=11$.

Find x.
3. Solve for x .

2. $A C=22, B C=x+14$, and $A B=x+10$.

Find x.
5. Find $D E$

Find $C E$

6. Points A, B, C, D, and E are collinear and in that order. Find $A C$ if $A E=x+50$ and $C E=x+32$.

Day 12: Line segments and points, Cross sections, and rotations

Warm-up:

1. Height of person $(H)=64 \mathrm{in}$.

Length of shadow $1=80 \mathrm{in}$.
Length of shadow $2=120 \mathrm{in}$.
The two triangles in the figure are similar. Explain why this is true.

How tall is the tree? Justify your answer.
2. A contractor is installing a new counter top in a kitchen. The figure shown here is a model for a counter top. The measurements on the model diagram are given. If the actual countertop will be similar to the model, explain one thing that must be true about the actual countertop.

If the ratio of sides of the model to the actual countertop is 1:30, what are the dimensions of the actual countertop?

3. Find the $m \angle R P S$.

4. H is in the interior of IGF. You are given that $m \angle I G H=2 x+5, m \angle F G H=47$, $m \angle I G F=18 x-12$. Find $m \angle I G H$ and $m \angle F G I$. (Hint: Draw a diagram!)
5. If T is in the interior of $\angle A B C$, and $m \angle A B C=3 x$, $m \angle A B T=x+3$, and $m \angle T B C=13$, find $m \angle A B C$.

The Lesson: Line segments and points, Cross sections, and rotations

A \qquad of a segment is a point that divides a segment into two congruent segments.

Midpoint Formula:

\square

Examples:

1. Billy and Evan are standing on a coordinate grid. Billy is currently on point $(-1,3)$ and Evan is currently on point $(2,-7)$. They decide to meet in the middle of the segment connecting their locations. What point should they walk to?

2. Sarah is also standing on a coordinate grid at point $(-5,0)$. Her friend is somewhere on the grid. Sarah walks in a straight line to point $(4,8)$ and realizes that she's gone exactly half of the distance to her friend's location. On what point is her friend (assuming that her friend did not move).

3. Caitlyn and Jack are standing on a coordinate grid. Caitlyn is at point $(4,12)$ and Jack is at point ($-2,-3$). Cailtyn can walk much faster than Jack, so they agree to met at the point $1 / 3$ the distance from Jack (so Caitlyn would walk 2/3 the distance and Jack would walk 1/3 the distance). On what point do they meet?

4. In the following diagram, $\overline{A C}$ and $\overline{B D}$ bisect each other.
a. What is the official name for point M ?
b. Find the value(s) of x and y.

c. Find $A M, M C, B M$, and $B D$. (Two points together with no line or segment above them mean "the distance between." AM translates to "the distance between A and M.)

Just as we can cut segments into pieces, we can cut 3-dimensional objects:

Cross Section: \qquad
1 A square pyramid is cut along the shaded plane shown below.

Which of the following is the cross-section of this solid?
(A)

(B)

(C)

(D)

3 A cross-section is cut from the circular cone below.

What is the shape of the cross-section?
(A) Square
(B) Semicircle
(C) Triangle
(D) Circle

2 A cube with a cylinder cut from its center is cut along the plane shown below.

Which of the following is the cross-section of this solid?
(F)

(H)

(G)

(1)

4 A cube with a cylinder cut from its center is cut along the plane shown below.

Which of the following is the cross-section of this solid?
(F)

(H)

(G)

(J)

5 Which drawing represents the top view of this solid?

(A)

(C)

(B)

(D)

6 A rectangular prism is cut along the shaded plane shown below.

Which of the following is the cross-section of this solid?
(F)

(G)

(H)

(J)

9 Andrew had a piece of foam in the shape of a rectangular prism as shown below. The base is a square with sides 3 inches long, and the piece is 5 inches tall. He cut the foam along the diagonal plane shown by the shaded area.

Which of the following is closest to the area of the shaded diagonal plane?
(A) 19.3 square inches
(B) 12 square inches
(C) 15.8 square inches
(D) 17.5 square inches

11 A cross-section is cut from the cylinder below.

What is the shape of the cross-section?
(A) Rectangle
(B) Circle
(C) Semicircle
(D) Oval

18 A hemisphere is cut along the plane shown below.

Which of the following is the cross-section of this solid?
(F)

(H)

(G)

(D)

Use the original solid to describe the shape of each cross section.
7. Cylinder: Cross section parallel to the base \qquad
Cross section perpendicular to the base \qquad
Diagonal - from corner to corner \qquad
8. Square Pyramid: Cross section parallel to the base \qquad
Cross section perpendicular to the base \qquad
Diagonal - from corner to corner \qquad

Day 13: Test Review

Warm-Up

Use the given information to find the indicated values.

1. Given $A B C D \cong E F G H$, find

the values of x and y. \begin{tabular}{l}
2. Given $\triangle X Y Z \cong \triangle R S T$,

find the values of a and b.

3. Given $\angle M \cong \angle G \& \angle N \cong \angle H$

find the value of x.
\end{tabular}
