Unit 1 Day 8

Congruence

Borrow a ruler \& protractor if you forgot yours!
1.Create two figures congruent to the one given using two different transformations and describe them.
2. Solve for $x . \frac{x}{x+3}=\frac{x+4}{x-1}$

$$
X=-1.5
$$

3. If \triangle CAT $\sim \Delta D O G$, find x and y.

$$
\begin{aligned}
& m \angle C=3 x-14 \\
& m \angle D=2 x+2 y \\
& m \angle T=3 \mathrm{y}-2 \mathrm{x}, \quad(-1,12) \\
& m \angle G=9-3 \mathrm{x}
\end{aligned}
$$

Be prepared to share with the class! :

Day 7 Homework

Are the triangles similar? If so, write a similarity statement. If not, explain why.
5)

$\Delta B C D \sim \Delta \boldsymbol{E F G}$ because SSS~ (all sides are proportional).
6)

$\Delta L K J \uparrow \Delta T U V$ because sides are not proportional.
7)

$\triangle S R Q+\triangle S V W$ because sides are not proportional.

Day 7 Homework

Solve for the length of the missing segment in the similar triangles
13)

12
14)

15)

17)

18)

Day 7 Homework

Solve each extended proportion for x and y with $x>0$ and $y>0$.

$$
\begin{align*}
\frac{x}{5}=\frac{9}{y}=\frac{y}{25} \quad \begin{array}{l}
x=3 \\
y
\end{array}=15
\end{align*}
$$

20) $\frac{x}{6}=\frac{x+10}{18}=\frac{4 x}{y} \quad x=5$
$y=24$
21) The two parallelograms below are similar. Find x, y, and the measure of each angle.
Angle $B=10$
Angle $F=4 x+2 y \quad x=6$
Angle $C=10 x-10 y$

$$
\begin{aligned}
& y=-7 \\
& m \angle B=m \angle F=10^{\circ} \\
& m \angle D=m \angle H=10^{\circ} \\
& m \angle C=m \angle G=130^{\circ} \\
& m \angle A=m \angle E=130^{\circ}
\end{aligned}
$$

Angle $G=130$

Day 7 Homework

22) Quadrilateral "MORE" is similar to Quadrilateral "SALT". Match the descriptions below with a value given in the list on the right by typing its letter in the box provided.

The length of segment TL
ER corresponds to this segment B
MO corresponds to this segment E EM corresponds to this segment A The length of segment MO

C
RO corresponds to this segment F

c. 6 cm
d. 7.5 cm
e. SA
f. LA

Day 7 Homework

Pg. 13-14 odds
1. $5 / 3$
3. $1 / 3$
5. $1 / 2 \mathrm{x}$
7. $22 \mathrm{x} / 35$
9. r/24
11. $(x-3) /(3 x-2)$
13. 5/12
15. 5/13
17. 12/5
19. 12/5
21. 14/15
23. $x=-3$
25. $x=2$
27. $x=11$

Pg. 13-14 evens
2. 2:3 We have already
4. $2 / 3$
6. 6/7
8. 1:16
10. $\mathrm{x}+1$ to 2
12. 9 to 1
14. 13 to 5
16. 13 to 12
18. 12 to 13
20. $x=10$
22. $x=20$
24. $x=-1 / 3$
26. $x=5 / 2$

Homework

Packet p. 25-26 all and p. 27-29 odds

Congruence Notes

Congruent Polygons have congruent corresponding ("matching") parts - their matching sides and angles.

Naming Congruent Figures

C corresponds to R.
$\frac{\angle B}{A X}$ corresponds to $\angle Q Q$.
$A C B X \cong P R Q Y$
a) Points can be named in any consecutive order.
b) Each corresponding vertex must be in the same order for each figure.

Ex. Figure BCAX is congruent to QRPY.

Example: $\triangle A B C \cong \triangle P Q R$. List the congruent corresponding parts.
(List the corresponding vertices in the same order. List the corresponding sides in the same order.)

Congruent Angles
Congruent Sides

$\angle A \cong \angle P$	$\overline{B C} \cong \overline{Q R}$
$\angle B \cong \angle Q$	$\overline{A B} \cong \overline{P Q}$
$\angle C \cong \angle R$	$\overline{A C} \cong \overline{P R}$

Be careful! The pictures don't always line up corresponding parts! The congruence statement MUST have them in order! ©

You Try!

$\triangle \mathrm{LMC} \cong \triangle \mathrm{BJK}$ Complete the congruence statements.
(Name all congruent angles. Name all congruent sides.)
3. $\overline{L C} \cong \overline{B K}$
4. $\overline{K J} \cong \overline{C M}$
5. $\overline{J B} \cong \overline{M L}$
6. $\angle \mathrm{L} \cong \angle B$
7. $\angle \mathrm{K} \cong \angle C$

8. $\angle \mathrm{M} \cong \angle J$
9. $\Delta \mathrm{CML} \cong \triangle K J B$
10. $\Delta \mathrm{KBJ} \cong \triangle C L M$
(Text p. 182)

Can you conclude that $\triangle A B C \cong \triangle C D E$ in the figure below?

List corresponding vertices in the same order.
If $\triangle A B C \cong \triangle C D E$, then $\angle B A C \cong \angle D C E$.
The diagram above shows $\angle B A C \cong \angle D E C$, not $\angle D C E$.
Corresponding angles are not necessarily congruent, therefore you cannot conclude that $\triangle A B C \cong \triangle C D E$.

Side - Side - Side Postulate

(or SSS Postulate)

If 3 sides of one triangle are congruent to 3 sides of another triangle, then the 2 triangles are congruent.

If $\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}$,

$$
\overline{A C} \cong \overline{D F}
$$

then $\triangle A B C \cong \triangle D E F$

Side - Angle - Side Postulate (or SAS Postulate)

If $\underline{2}$ sides and the included angle of one triangle are congruent to 2 sides and the included angle of another triangle, then the 2 triangles are congruent.

If $\overline{A B} \cong \overline{D E}, \angle A \cong \angle D$, $\overline{A C} \cong \overline{D F}$
then $\triangle B A C \cong \triangle E D F$

Angle - Side - Angle Postulate

(or ASA Postulate)

If 2 angles and the included side of one triangle are congruent to 2 angles and the included side of another triangle, then the 2 triangles are congruent.

If $\overline{A C} \cong \overline{D F}, \angle A \cong \angle D$, $\angle C \cong \angle F$
then $\triangle A C B \cong \triangle D F E$

Angle - Angle - Side Theorem

(or AAS Theorem)

If 2 angles and a non-included side of one triangle are congruent to 2 angles and a corresponding non-included side of another triangle, then the 2 triangles are congruent.

If $\overline{\mathrm{BC}} \cong \overline{E F}, \angle A \cong \angle D$, $\angle C \cong \angle F$
then $\triangle C A B \cong \triangle F D E$

Hypotenuse - Leg Theorem: (or HL Theorem)

If the hypotenuse and 1 leg of one right triangle are congruent to the hypotenuse and 1 leg of another right triangle, then the triangles are congruent.

If $\frac{\overline{A B}}{\cong} \cong \overline{X Y}$
and $\overline{\angle \bar{B}} \overline{X Z}$ and $\angle Y$
are right angles,

then $\triangle \mathrm{ABC} \cong \triangle \mathrm{XYZ}$

HM2 Unit 1:

Triangle Congruence Day 8

- https://play.kahoot.it/\#/?quizld=250115bb-9355-4e7b-aca4-3ed60fdeddfd

Practice:
 Mashington puzale

Exit Ticket

1) Draw a pair of congruent triangles and place markings on the triangles in such a way that would allow you to establish that the triangles were congruent by SSS.
2) Draw a pair of congruent triangles and place markings on the triangles in such a way that would allow you to establish that the triangles were congruent by SAS.
3) Draw a pair of congruent triangles and place markings on the triangles in such a way that would allow you to establish that the triangles were congruent by ASA.
4) Draw a pair of congruent triangles and place markings on the triangles in such a way that would NOT allow you to establish that the triangles were congruent.

Homework

Packet p. 25-26 all and p. 27-29 odds

