Unit 1 Day 4

DILATIONS

Warm Up

Given the line segment with points $A(-1,4)$ and $B(2,5)$ graph the image after the following transformations, identify the coordinates of the image, and write the Algebraic Rule for \#1 \& 2.

1) Reflect over the line $y=x$.
$A^{\prime}(4,-1), B^{\prime}(5,2)$
$(x, y) \rightarrow(y, x)$
2) Reflect over the line $y=-x$.

$$
\begin{aligned}
& A^{\prime}(-4,1), B^{\prime}(-5,-2) \\
& (x, y) \rightarrow(-y,-x)
\end{aligned}
$$

3) Reflect over the line $\mathrm{y}=3$.

$$
A^{\prime}(-1,2), B^{\prime}(2,1)
$$

4) Reflect over the line $x=-1$.

$$
A^{\prime}(-1,4), B^{\prime}(-4,5)
$$

Warm Up

Given the line segment with points $A(-1,4)$ and $B(2,5)$ graph the image after the following transformations, identify the coordinates of the image, and write the Algebraic Rule for \#1 \& 2.

1) Reflect over the line $y=x$.
2) Reflect over the line $y=-x$.
3) Reflect over the line $\mathrm{y}=3$.
4) Reflect over the line $x=-1$.

Done Early? Do Day 3 Notes Supplement Worksheet

- Rotations of Polygons

Day з Homework Answers

1) rotation 180° about the origin

$H^{\prime}(3,5)$
$J^{\prime}(5,3)$
$Q^{\prime}(0,1)$
$(x, y) \rightarrow(-x,-y)$
2) rotation 90° counterclockwise about the
origin

3) rotation 180° about the origin

Day 3 Homework Answers

5) rotation 90° clockwise about the origin $U(1,-2), W(0,2), K(3,2), G(3,-3)$

6) rotation 180° about the origin

$$
\begin{aligned}
& Z(-1,-5), K(-1,0), C(1,1), N(3,-2) \\
& Z^{\prime}(1,5), K^{\prime}(1,0), C^{\prime}(-1,-1), N^{\prime}(-3,2) \\
& \quad(x, y) \rightarrow(-x,-y) \quad \mathrm{R}_{0,180}
\end{aligned}
$$

9) rotation 90° clockwise about the origin

$$
\begin{aligned}
& S(1,-4), W(1,0), J(3,-4) \\
& S^{\prime}(-4,-1), W^{\prime}(0,-1), J^{\prime}(-4,-3) \\
& \quad(x, y) \rightarrow(y,-x) \quad \mathrm{R}_{0,270}
\end{aligned}
$$

6) rotation 180° about the origin
$V(2,0), S(1,3), G(5,0)$

7) rotation 180° about the origin $L(1,3), Z(5,5), F(4,2)$

$$
\begin{gathered}
L^{\prime}(-1,-3), Z^{\prime}(-5,-5), F^{\prime}(-4,-2) \\
(\boldsymbol{x}, \boldsymbol{y}) \rightarrow(-\boldsymbol{x},-\boldsymbol{y}) \quad \mathrm{R}_{0,180}
\end{gathered}
$$

10) rotation 180° about the origin $V(-5,-3), A(-3,1), G(0,-3)$
$V^{\prime}(5,3), A^{\prime}(3,-1), G^{\prime}(0,3)$
5

Day 3 HW Answers

11)

rotation 90° clockwise about the origin
13)

12)

$(x, y) \rightarrow(-x,-y)$
rotation 180° about the origin

Day з Homework Answers Packet p. 19-20 multiples of 3

$$
\text { 3. }(-16,-8)
$$

$$
\text { 18. }(3,2)
$$

$$
\text { 6. }(-4,-4)
$$

$$
\text { 21. }(2,0)
$$

$$
\text { 9. }(5,4)
$$

$$
\text { 24. }(-7,9)
$$

$$
\text { 12. }(1,-4)
$$

$$
\text { 27. }(-8,-3)
$$

$$
\text { 15. }(6,2)
$$

$$
\text { 30. }(-5,8)
$$

$$
\text { 33. }(-6,11)
$$

Tonight's HW

- Packet p. 10

Packet p. 13-14 evens, Packet p. 15

- Study for quiz tomorrow!!!
- Complete the Algebra Rules side of the Colored Study Guide \& Check your answers on the website! :)
**Print new HW Packet Days 5-7!
You need them for class tomorrow \& the p18-20 HW tonight!

Let's discuss the quiz $)$

- Graphing Transformations
- Short Answer Questions
- Multiple choice questions
*It's like a short test!
Pay attention to the time allowed for the quiz! That's all you get!

Practice Pop Quiz!

*Let's test your knowledge of the Algebra Rules :

Transformations

Transformations

> Today we are talking about dilations

dilations

Please clear your desk of evergthing but: roler, two colored pencils, notes packet and a cilcolation.

Complete the Dilations Discovery Activity

 Notes p. 13 - 15Aleice in Wonderland

Alice in Wonderland ~ Part One

Starting Height	Alice Eat OR Drinks	Scale Factor from above	New Height
54 inches	Red Potion	$\frac{1}{9}$	6 inches
6 inches	Chocolate Cake	12	72 inches
72 inches	Yellow Potion	$\frac{1}{4}$	18 inches
18 inches	Carrot Cake	9	162 inches
162 inches	Blue Potion	$\frac{1}{36}$	4.5 inches
4.5 inches	Lemon Cake	10	45 inches
45 inches	Green Potion	$\frac{1}{15}$	3 inches
3 inches	Red Velvet Cake	18	54 inches

() T1 1 ?

A dilation is

- An enlargement of the pre-image if the scale factor is greater than one (SF > 1).
- A reduction of the pre-image if the scale factor is between zero and one ($0<S F<1$).
- If the scale factor is 1 , then the pre-image and image are congruent.

The center of dilation is a fixed point in the plane about which all points reference too.

A dilation is SOMETIMES/ ALWAYS / NEVER an Isometry
Remember, from Day 1: An Isometry is a transformation

Write these in
your notes! © in which the pre-image and image are congruent!

The amount by which the image grows or shrinks is called scale factor

Practice: Dilations with Coordinctes

Notes p. 16 \& 17

Practice p. 16

2. Graph a new figure on the same coordinate plane by applying a scale factor of 2 .

What is the Algebraic Rule for this transformation? $(x, y) \rightarrow(2 x, 2 y)$
How do the preimage and image compare? Describe the figure and the coordinate pairs.
The image is twice the size. The x and y values double.
3. Graph a new figure on the same coordinate plane by applying a scale factor of $1 / 2$.

What is the Algebraic Rule for this transformation? $(x, y) \rightarrow(1 / 2 x, 1 / 2 y)$
Compare the preimage to the dilated figure. Describe the figure and the coordinate pairs.
The image is half the size. The x and y values are divided by 2 .
4. What happens when you apply a scale factor greater than 1 to a set of coordinates?

It is an enlargement. The figure gets bigger.
5. What happens when you apply a scale factor less than 1 to a set of coordinates?

It is a reduction. The figure gets smaller.
6. What happens when you apply a scale factor of 1 to a set of coordinates?

The figure stays the same size. The image is congruent to the preimage.

Practice: Dilations with Coordinates p. 17 ANSWERS

1. Reduction with scale factor of $1 / 2$

$$
(x, y) \rightarrow(1 / 2 x, 1 / 2 y)
$$

2. Enlargement with scale factor of 2

$$
(x, y) \rightarrow(2 x, 2 y)
$$

3. Enlargement with scale factor of 1.5

$$
(x, y) \rightarrow(1.5 x, 1.5 y)
$$

Summarize with Algebraic Rules:

What type of transformation does the following algebraic rule produce?
$(x, y) \rightarrow$ ($a x, a y) \quad$ if $a>1$ then enlargement
if $0<a<1$ then reduction
where
a = scale factor

Transformation Rules Summary *Dilations

Enlargement :

$$
\begin{aligned}
& (x, y) \rightarrow(a x, a y) \\
& a>1
\end{aligned}
$$

Reduction:

$$
\begin{aligned}
& (x, y) \rightarrow(a x, a y) \\
& 0<a<1
\end{aligned}
$$

Tonight's HW

- Packet p. 10

Packet p. 13-14 evens, Packet p. 15

- Study for quiz tomorrow!!!
- Complete the Algebra Rules side of the Colored Study Guide \& Check your answers on the website! :)
**Print new HW Packet Days 5-7!
You need them for class tomorrow \& the p18-20 HW tonight!

