Unit 1 Day 3

Rotations

Warm Up

Given triangle $A B C$ with $A(-1,4), B(4,3)$ and $C(1,-5)$, graph the image points after the following transformations, identify the coordinates of the image, and write the Algebraic Rule for each.

1) Translate left 3, up 2
$A^{\prime}(-4,6), B^{\prime}(1,5), C^{\prime}(-2,-3)$
$(x, y) \rightarrow(x-3, y+2)$
2) Translate right 2, down 1
$A^{\prime}(1,3), B^{\prime}(6,2), C^{\prime}(3,-6)$
$(x, y) \rightarrow(x+2, y-1)$
3) Reflect over the x-axis $A^{\prime}(-1,-4), B^{\prime}(4,-3), C^{\prime}(1,5)$ $(x, y) \rightarrow(x,-y)$
4) Reflect over the y-axis
$A^{\prime}(1,4), B^{\prime}(-4,3), C^{\prime}(-1,-5)$
$(x, y) \rightarrow(-x, y)$
5) Solve the following system:

$4 m+18 n=80$
$12 m+34 n=160$

Day 2 Homework Answers

1) reflection across the x-axis

2) reflection across $y=1$

3) reflection across $y=3$

4) reflection across the x-axis

Day 2 Homework Answers

5) reflection across the x-axis $T(2,2), C(2,5), Z(5,4), F(5,0)$

$$
(x, y) \rightarrow(x,-y)
$$

7) reflection across the x-axis

$$
\begin{aligned}
& K(1,-1), N(4,0), Q(4,-4)(x, y) \rightarrow(x,-y) \\
& N^{\prime}(4,0), Q^{\prime}(4,4), K^{\prime}(1,1)
\end{aligned}
$$

9) reflection across $x=3$

$$
\begin{aligned}
& F(2,2), W(2,5), K(3,2) \\
& W^{\prime}(4,5), K^{\prime}(3,2), F^{\prime}(4,2)
\end{aligned}
$$

6) reflection across $y=-2$

$$
H(-1,-5), M(-1,-4), B(1,-2), C(3,-3)
$$

8) reflection across $y=-1$

$$
\begin{aligned}
& R(-3,-5), N(-4,0), V(-2,-1), E(0,-4) \\
& N^{\prime}(-4,-2), V^{\prime}(-2,-1), E^{\prime}(0,2), R^{\prime}(-3,3)
\end{aligned}
$$

10) reflection across $x=-1$

$$
\begin{aligned}
& V(-3,-1), Z(-3,2), G(-1,3), M(1,1) \\
& Z^{\prime}(1,2), G^{\prime}(-1,3), M^{\prime}(-3,1), V^{\prime}(1,-1)
\end{aligned}
$$

Day 2 Homework Answers

11)

reflection across $x=-2$
13)

reflection across $x=-2$
12)

reflection across the y-axis
14)

reflection across $x=2$

(\mathbf{x}, \mathbf{y})

Day 2 HW Answers

1. $(3,9) \quad 5 x+(3 x)=24 \quad 8 x=24 x=3 \quad y=3(3)$
2. $(9,22) \quad 3 x+2(4+2 x)=71 \quad 7 x+8=71 \quad x=9 \quad y=4+2(9)$
3. $(1,6)$ change to $2 x+4=y \quad$ then $8 x+3(2 x+4)=26$
$14 x+12=26 \quad x=1 \quad 2(1)=y-4$
4. $(4,0)$ add then $8 x=32 \quad x=4 \quad 5(4)-y=20$
5. ($3,-1$) multiply top by 3 and bottom by -4 then add

$$
-31 y=31 \quad y=-1 \quad 6 \quad 3 x+4(-1)=5
$$

Homework

- Packet Page 8 \& 9
- Packet Page 11-12 multiples of 3

- Have you found the HW Packet Day 5-7 on the website? Remember that you need to print it before class Tuesday! honorsmath2greenhope.weebly.com
- Start reviewing the material we have learned thus far. The first quiz is coming up on Wednesday!
- Suggestion for learning algebraic rules, notations, and vocabulary: Notecards ©

Rotations Discovery

Clear your desk of everything except:
Notes, Pencil, Patty Paper, Compass
Do the Rotations Discovery Activity
Notes p.8-9 Top

Rotations Exploration p. 8

What do you notice about the triangle as it rotates around in either direction?

The preimage and corresponding image points lie on the same circle as you rotate the triangle
\therefore The preimage and corresponding image points are equidistant from the center of rotation. (Ex: A and A^{\prime} are equidistant from O.)

Rotations Exploration p. 9

-What method did you use?
Patty paper rotation with pencil on center of rotation, V .
-What does the arrow tell you? The angle of rotation AND The direction of rotation

- What is point V ? What happens to point V after the motion is performed?
V is the center of rotation.
V stays fixed even after the motion is performed.

Summary

This type of transformation is called a rotation. To rotate an object, you must specify the angle of rotation, the point around which the rotation is to occur, and the direction.
*Note: the standard for rotations, if not otherwise noted, is counterclockwise

Visualizing Rotations Centered About the Origin

The flag shown below is rotated about the origin $90^{\circ}, 180^{\circ}$, and 270°. Flag $A B C D E$ is the preimage. Flag $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$ is a 90° counterclockwise rotation of ABCDE.

Counter-Clockwise Positive Degrees!

Clockwise

Negative Degrees!

NOTE: Unless otherwise specified, the standard for rotations is counterclockwise!

Notation for Rotations

The flag shown below is rotated about the origin $90^{\circ}, 180^{\circ}$, and 270°. Flag $A B C D E$ is the preimage. Flag $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$ is a 90° counterclockwise rotation of $A B C D E$.

Rotation Notation:

You Try!

Bottom of Notes p. 9-10

After the checkpoint, remember to check in with your Teacher or a Neighbor!

Exploration Answers p. 10

2. Rotate Triangle $\mathrm{ABC} 90^{\circ}$

$$
A^{\prime}(0,2), B^{\prime}(-4,3), C^{\prime}(-4,6)
$$

3. Rotate Triangle ABC 270°

$$
A^{\prime}(0,-2), B^{\prime}(4,-3), C^{\prime}(4,-6)
$$

4. Rotate Triangle ABC 180°

$$
A^{\prime}(-2,0), B^{\prime}(-3,-4), C^{\prime}(-6,-4)
$$

Checkpoint Answers p. 10

1. A 90° counter-clockwise rotation maps $(x, y) \rightarrow(-\mathbf{y}, \mathbf{x}) \quad R_{0,90}$
2. A 270° counter-clockwise rotation maps $(x, y) \rightarrow(y,-x) \quad R_{0,270}$
3. A 180° rotation maps $(x, y) \rightarrow(-x,-y) \quad R_{0,180}$
4. A rotation of 270° clockwise is equivalent to a rotation of 90° counterclockwise.
5. A rotation of 270° counterclockwise is equivalent to a rotation of 90° clockwise.

Practice: Rotations with Polygons and on the Coordinate Plane

 Notes p. 11 \& 12

Summarize With Algebraic Rules What type of transformation does each of the following algebraic rules produce?

$(x, y) \rightarrow(-y, x)$ Rotate 90° Counterclockwise	$(x, y) \rightarrow(-x,-y)$ Rotate 180°
$(x, y) \rightarrow(y,-x)$Rotate 270° Counterclockwise (or Rotate 90° clockwise)	
Can you figure out this one on your own? the results from the following algebraic rule $\quad(x, y) \rightarrow(x, y)$	
Rotate 360° or 0°	

Practice p. 11

ABCDE is a regular pentagon. A regular polygon has all congruent angles and all congruent side lengths.

Name the image of point E for a counterclockwise 72° rotation about X. A

Name the image of point A for a clockwise 216° rotation about X.

Describe 2 transformations with a preimage of point D and image of B.

Ex. 144° clockwise rotation from D with a center of X. Ex. 216° rotation from D with a center of X

Practice p. 12

1) The coordinates of $A B C$ are $A(3,1), B(6,5)$ and $C(2,4)$. The coordinates of $A^{\prime} B^{\prime} C^{\prime}$ are $A^{\prime}(-1,3), B^{\prime}(-5,6)$, and $C^{\prime}(-4,2)$. 90° rotation $(x, y) \rightarrow(-y, x)$
2) The coordinates of $A B C$ are $A(3,1), B(6,5)$ and $C(2,4)$. The coordinates of $A^{\prime} B^{\prime} C^{\prime}$ are $A^{\prime}(1,-3)$, $B^{\prime}(5,-6)$, and $C^{\prime}(4,-2)$.
270° rotation $(x, y) \rightarrow(y,-x)$ (or 90° clockwise rotation)
3) The coordinates of $A B C$ are $A(3,1), B(6,5)$ and $C(2,4)$. The coordinates of $A^{\prime} B^{\prime} C^{\prime}$ are $A^{\prime}(-3,-1), B^{\prime}(-6,-5)$, and $C^{\prime}(-2,-4)$.
180° rotation $(x, y) \rightarrow(-x,-y)$
or reflection over $x \& y$ axis
4) The coordinates of $A B C$ are $A(2,-1), B(6,4)$ and $C(-3,2)$. The coordinates of $A^{\prime} B^{\prime} C^{\prime}$ are $A^{\prime}(-1,-2), B^{\prime}(4,-6)$, and $C^{\prime}(2,3)$.
270° rotation $(x, y) \rightarrow(y,-x)$ (or 90° clockwise rotation)

Transformation Rules

Summary Let's fill it out!

Homework

- Packet Page 8 \& 9
- Packet Page 11-12 multiples of 3

- Have you found the HW Packet Day 5-7 on the website? Remember that you need to print it before class Tuesday! honorsmath2greenhope.weebly.com
- Start reviewing the material we have learned thus far. The first quiz is coming up on Wednesday!
- Suggestion for learning algebraic rules, notations, and vocabulary: Notecards ©

