Unit 1 Day 3

Rotations

<u>Warm Up</u>

Given triangle ABC with A(-1, 4), B(4, 3) and C(1, -5), graph the image points after the following transformations, identify the coordinates of the image, and write the Algebraic Rule for each.

- 1) Translate left 3, up 2 A'(-4, 6), B'(1, 5), C'(-2, -3) $(x, y) \rightarrow (x-3, y+2)$
- 2) Translate right 2, down 1 A'(1, 3), B'(6, 2), C'(3, -6) $(x, y) \rightarrow (x+2, y-1)$
- 3) Reflect over the x-axis A'(-1, -4), B'(4, -3), C'(1, 5) $(x, y) \rightarrow (x, -y)$
- 4) Reflect over the y-axis A'(1, 4), B'(-4, 3), C'(-1, -5) $(x, y) \rightarrow (-x, y)$
- 5) Solve the following system:

4m + 18n = 8012m + 34n = 160 (2, 4)

Day 2 Homework Answers

- 1) reflection across the x-axis $y (x, y) \rightarrow (x, -y)$
- 3) reflection across y = 1

2) reflection across y = 3

4) reflection across the x-axis

Day 2 Homework Answers

- 7) reflection across the x-axis $K(1, -1), N(4, 0), Q(4, -4)(x, y) \rightarrow (x, -y)$ N'(4, 0), Q'(4, 4), K'(1, 1)
- 9) reflection across x = 3 F(2, 2), W(2, 5), K(3, 2)W'(4, 5), K'(3, 2), F'(4, 2)

6) reflection across y = -2H(-1, -5), M(-1, -4), B(1, -2), C(3, -3)

- 8) reflection across y = -1 R(-3, -5), N(-4, 0), V(-2, -1), E(0, -4)N'(-4, -2), V'(-2, -1), E'(0, 2), R'(-3, 3)
- 10) reflection across x = -1 V(-3, -1), Z(-3, 2), G(-1, 3), M(1, 1)Z'(1, 2), G'(-1, 3), M'(-3, 1), V'(1, -1)

Day 2 Homework Answers

reflection across x = -2

reflection across the y-axis

14)

(x , y)	Day 2 HW Answers			
1. (3, 9)	5x+(3x)=24	8x=24 x=3	y=3(3)	
4. (9, 22)	3x+2(4+2x)=71	7x+8=71	x=9	y=4+2(9)
7. (1, 6)	change to 2x+4=y 14x+12=26	then 8x+3 x=1	3(2x+4)=26	2(1)=y-4
10. (4, 0)	add then 8x=32	x=4	5(4)—y=20	
22. (3, -1)	multiply top by 3 and bottom by -4 then add -31y=31 y=-1 $_6$ 3x+4(-1)=5			

Homework

- Packet Page 8 & 9
- Packet Page 11-12 multiples of 3

- Have you found the HW Packet Day 5-7 on the website? Remember that you need to print it before class Tuesday! <u>honorsmath2greenhope.weebly.com</u>
- Start reviewing the material we have learned thus far. The first quiz is coming up on Wednesday!
- Suggestion for learning algebraic rules, notations, and vocabulary: Notecards ^(C)

Rotations Discovery

Clear your desk of everything except:

Notes, Pencil, Patty Paper, Compass

Do the Rotations Discovery Activity

Notes p.8 -9 Top

Rotations Exploration p. 8

What do you notice about the triangle as it rotates around in either direction?

The preimage and corresponding image points lie on the same circle as you rotate the triangle

. The preimage and corresponding image points are equidistant from the center of rotation. (Ex: A and A' are equidistant from O.)

Rotations Exploration p. 9

- What method did you use? Patty paper rotation with pencil on center of rotation, V.
- What does the arrow tell you? The angle of rotation AND The direction of rotation

• What is point V? What happens to point V after the motion is performed?

V is the center of rotation.

V stays fixed even after the motion is performed.

Summary

This type of transformation is called a <u>rotation</u>. To rotate an object, you must specify the <u>angle</u> of rotation, the <u>point</u> around which the rotation is to occur, and the **direction**.

*Note: the standard for rotations, if not otherwise noted, is <u>counterclockwise</u>

Visualizing Rotations Centered About the Origin

The flag shown below is rotated about the origin 90°, 180°, and 270°. Flag ABCDE is the preimage. Flag A'B'C'D'E' is a 90° counterclockwise rotation of ABCDE.

standard for rotations is counterclockwise!

Notation for Rotations

The flag shown below is rotated about the origin 90°, 180°, and 270°. Flag ABCDE is the preimage. Flag A'B'C'D'E' is a 90° counterclockwise rotation of ABCDE.

You Try! Bottom of Notes p. 9 - 10

After the checkpoint, remember to check in with your Teacher or a Neighbor!

Exploration Answers p. 10

2. Rotate Triangle ABC 90° A'(0, 2), B'(-4, 3), C'(-4, 6)

3. Rotate Triangle ABC 270° A'(0, -2), B'(4, -3), C'(4, -6)

4. Rotate Triangle ABC 180° A'(-2, 0), B'(-3, -4), C'(-6, -4)

Checkpoint Answers p. 10

1. A 90° counter-clockwise rotation maps (x, y) \rightarrow (- y, x) $R_{0,90}$

2. A 270° counter-clockwise rotation maps (x, y) \rightarrow (y, -x) $R_{0.270}$

3. A 180° rotation maps (x, y) \rightarrow (-x, -y) R_{0,180}

 4. A rotation of 270° clockwise is equivalent to a rotation of 90° counterclockwise.

 A rotation of 270° counterclockwise is equivalent to a rotation of 90° clockwise.

Practice: Rotations with Polygons and on the Coordinate Plane Notes p.11 & 12

Summarize With Algebraic Rules What type of transformation does each of the following algebraic rules produce?

 $(x, y) \rightarrow (-y, x)$ Rotate 90° $(x, y) \rightarrow (-x, -y)$ Rotate 180° Counterclockwise $(x, y) \rightarrow (y, -x)$ Rotate 270° Counterclockwise (or Rotate 90° clockwise) Can you figure out this one on your own? Describe the rotation the results from the following algebraic rule $(x, y) \rightarrow (x, y)$ Rotate 360° or 0° The rotation from the algebraic rule $(x, y) \rightarrow (x, y)$ is the same as another transformation. Describe that transformation. Double reflection over one axis

Practice p. 11

ABCDE is a regular pentagon. A regular polygon has all congruent angles and all congruent side lengths.

Name the image of point E for a counterclockwise 72° rotation about X. A Name the image of point A for a clockwise 216° rotation about X. C Describe 2 transformations with a preimage of point D and image of B. Ex. 144° clockwise rotation from

Ex. 144° clockwise rotation from D with a center of X. Ex. 216° rotation from D with a center of X

Practice p. 12

The coordinates of ABC are
 A(3, 1), B(6, 5) and C(2, 4). The
 coordinates of A'B'C' are
 A'(-1, 3), B'(-5, 6), and C'(-4, 2).

90° rotation (x, y) \rightarrow (-y, x)

2) The coordinates of ABC are
A(3, 1), B(6, 5) and C(2, 4). The
coordinates of A'B'C' are A'(1, -3),
B'(5, -6), and C'(4, -2).

270° rotation $(x, y) \rightarrow (y, -x)$ (or 90° clockwise rotation)

3) The coordinates of ABC are A(3, 1), B(6, 5) and C(2, 4). The coordinates of A'B'C' are A'(-3, -1), B'(-6, -5), and C'(-2, -4). 180° rotation $(x, y) \rightarrow (-x, -y)$ or reflection over x & y axis 4) The coordinates of ABC are A(2, -1), B(6, 4) and C(-3, 2). The coordinates of A'B'C' are A'(-1, -2), B'(4, -6), and C'(2, 3). 270° rotation $(x, y) \rightarrow (y, -x)$ (or 90° clockwise rotation)

Transformation Rules

Summary Let's fill it out!

Homework

- Packet Page 8 & 9
- Packet Page 11-12 multiples of 3

- Have you found the HW Packet Day 5-7 on the website? Remember that you need to print it before class Tuesday! <u>honorsmath2greenhope.weebly.com</u>
- Start reviewing the material we have learned thus far. The first quiz is coming up on Wednesday!
- Suggestion for learning algebraic rules, notations, and vocabulary: Notecards ^(C)