Unit 1 Day 2

Reflections

Warm Up - in Notes Handout

Using the points $A(3,-4), B(1,3), C(-2,1), D(-3,-5)$, perform each rule and give the resulting image points and the requested information.

Remember:

Pick up stuff by the window!

1) translate right 2 , down 5

Algebraic Rule: \qquad
3) translate using the rule $(x, y) \rightarrow(x, y-6)$
2) translate left 6, up 4

Algebraic Rule: \qquad
4) translate using the vector $\langle-1,2$ >

Description: \qquad Description: \qquad
ADD THESE to your notes THEN try them.
5) Given A is in the interior of $\angle J K L, m \angle J K A=6 x+1$, $m \angle J K L=11 x-4$, and $m \angle A K L=15$, find $m \angle J K A$.
6) Given G is on the bisector of $\angle D B C, m \angle G B D=9 x+11$, and $m \angle C B D=82$, find $m \angle D B G$.

Warm Up ANSWERS

Using the points $A(3,-4), B(1,3), C(-2,1), D(-3,-5)$, perform each rule and give the resulting image points and the requested information.

1) translate right 2 , down 5

$$
\begin{array}{ll}
A^{\prime}(5, & -9), \\
C^{\prime}(0, & -4), \\
B^{\prime}(3, & -2), \\
D^{\prime}(-1, & -10)
\end{array}
$$

Algebraic Rule:

$$
(x, y)->(x+2, y-5)
$$

3) translate using the rule

$$
\begin{aligned}
& (x, y)->(x, y-6) \\
& A^{\prime}(3,-10), B^{\prime}(1,-3), \\
& C^{\prime}(-2,-5), D^{\prime}(-3,-11)
\end{aligned}
$$

Description:
Translated down 6 units
2) translate left 6, up 4

$$
\begin{aligned}
& A^{\prime}(-3,0), B^{\prime}(-5,7) \\
& C^{\prime}(-8,5), D^{\prime}(-9,-1)
\end{aligned}
$$

Algebraic Rule:

$$
(x, y)->(x-6, y+4)
$$

4) translate using the vector

$$
\langle-1,2\rangle
$$

$$
\begin{aligned}
& A^{\prime}(2,-2), B^{\prime}(0,5), \\
& C^{\prime}(-3,3), D^{\prime}(-4,-3)
\end{aligned}
$$

Description:
Translated left 1 and up 2

Warm Up ANSWERS

ADD THESE to your notes THEN try them.
5) Given A is in the interior of $\angle J K L, m \angle J K A=6 x+1$, $m \angle J K L=11 x-4$, and $m \angle A K L=15$, find $m \angle J K A$.

$$
x=4
$$

$$
m \angle J K A=25
$$

6) Given G is on the bisector of $\angle D B C, m \angle G B D=9 x+11$, and $m \angle C B D=82$, find $m \angle D B G$.

$$
x=10 / 3
$$

$$
m \angle D B G=41
$$

Day 1 Homework Answers p. 1-2 Even

1) translation: 1 unit left $(x, y)->(x-1, y)$

2) translation: 3 units right

3) translation: 1 unit right and 2 units down

4) translation: 1 unit right and 2 units down

Day 1 Homework Answers p. 1-2 Even

5) translation: 5 units up $(x, y)->(x, y+5)$ $U(-3,-4), M(-1,-1), L(-2,-5)$

6) translation: 2 units left and 1 unit down

$$
\begin{aligned}
& Q(0,-1), D(-2,2), V(2,4), J(3,0) \\
& Q^{\prime}(-2,-2), D^{\prime}(-4,1), V^{\prime}(0,3), J^{\prime}(1,-1) \\
& (\mathbf{x}, \mathbf{y})->(\mathbf{x}-\mathbf{2}, \mathbf{y}-\mathbf{1})
\end{aligned}
$$

9) translation: 4 units left and 4 units up

$$
\begin{gathered}
J(-1,-2), A(-1,0), N(3,-3) \\
J^{\prime}(-5,2), A^{\prime}(-5,4), N^{\prime}(-1,1) \\
\mathbf{(x , y)}->(\mathbf{x}-4, \mathbf{y}+4)
\end{gathered}
$$

6) translation: 3 units up $(x, y)->(x, y+3)$ $R(-4,-3), D(-4,0), L(0,0), F(0,-3)$

7) translation: 2 units down

$$
\begin{aligned}
& D(-4,1), A(-2,5), S(-1,4), N(-1,2) \\
& D^{\prime}(-4,-1), A^{\prime}(-2,3), S^{\prime}(-1,2), N^{\prime}(-1,0) \\
& \quad(\mathbf{x}, \mathbf{y})->(\mathbf{x}, \mathbf{y}-\mathbf{2})
\end{aligned}
$$

10) translation: 3 units right and 4 units up

$$
Z(-4,-3), I(-2,-2), V(-2,-4)
$$

$$
Z^{\prime}(-1,1), I^{\prime}(1,2), V^{\prime}(1,0)
$$

$$
(x, y)->(x+3, y+4)
$$

Day 1 Homework Answers p. 1-2 Even

11) $(x, y) \rightarrow(x, y+4)$

translation: 4 units up
12) $(x, y)->(x-4, y+2)$

translation: 4 units left and 2 units up
$(x, y)->(x+3, y-3)$

translation: 3 units right and 3 units down

translation: 6 units right

Day 1 Homework Answers p. 3-4

1. $\overline{B A}$

2. The length of segment $\overline{A C}$
3. $A B+B C=A C \quad x=6$
4. A point that divides a segment into two congruent segments $x=5 \quad A C=44$
5. Right Acute Obtuse Straight
6. $m \angle 1+m \angle 2=m \angle A B C \quad x=6$
7. A ray or segment that divides an angle into two congruent angles $\quad x=11 m \angle A B C=86$
8. a. $=$
b. \cong, \cong
c. =
d. =
e. \cong
9. $x=55$
$y=35$
$b=70$
$z=110$
10. $a=110$
$c=110$
$d=70$
11. $a=64$
$b=94$
$c=29$

Day 1 Homework Answers p. 4-5

12. $x=4 \quad T U=8 \quad U B=13$
13. $x=2 \quad T U=7$
$U B=3$
$T B=10$
14. $x=8 \quad R S=41$
$M N=41$
15. $x=6 \quad R S=16 \quad M N=16$
16. $x=25 \quad A B=42 \quad B C=42 \quad A C=84$
17. $x=43 \quad A B=49 \quad B C=49 \quad A C=98$
18. $m \angle 2=119^{\circ}$
19. $m \angle R E A=53^{\circ}$
20. $m \angle L O V=56^{\circ}$

ALWAYS DRAW on the PICTURE ©

Reminders for tonight...

1) Homework Listed on Outline: Packet p. 6-7 and p. 11-12 \#1, 4, 7, 10, 22 NOTICE: pages 11-12 are some Algebra review
2) Get onto Course Website and Print HW Packet Day 5-7 by Tuesday 9/6 honorsmath2greenhope.weebly.com
3) Get syllabus \downarrow honor code forms signed and completed
4) Get supplies for Class

- especially Calculator $\$$ Compass

Complete Reflections Activities

Notes p. 4-6

Check in with Teacher or a
Neighbor after each Checkpoint

Check your Answers! Notes p. 5

- A reflection is a transformation in which the image is a mirror image of the preimage.
- A point on the line of reflection maps to itself .
- Other points map to the opposite side of the reflection line so that the reflection line is the perpendicular bisector of the segment joining the preimage and the image.
- Preimage and image points are equidistant from the reflection line (or mirror line).
- Notation for reflections is $\mathrm{R}_{\text {line of reflection }}$.

Example: $R_{x-a x i s}$ means reflection across the x-axis.

Check your Answers! Notes p. 6

Algebraic Rules for Reflections:

1. Reflection in the x-axis

$$
\operatorname{maps}(x, y) \rightarrow(x,-y)
$$

Proper Notation
$R_{x \text {-axis }}$
2. Reflection in the y-axis $\operatorname{maps}(x, y) \rightarrow(-x, y)$
$R_{y \text {-axis }}$
3. Reflection in the line $y=x$

$$
\operatorname{maps}(x, y) \rightarrow(y, x)
$$

$R_{y=x}$
4. Reflection in the line $y=-x$ maps $(x, y) \rightarrow(-y,-x)$
$R_{y=-x}$

Practice

Reflections Notes p. 7

Notes p. 7

The points $(2,4),(3,1)$, $(5,2)$ are reflected with the rule $(x, y) \rightarrow(x,-y)$

Description:

Reflection over x-axis

The points $(2,4),(3,1)$, $(5,2)$ are reflected with the rule $(x, y) \rightarrow(-x, y)$

Description:
Reflection in the y-axis

Notes p. 7

The points (3,2), $(1,5)$, $(3,4)$ are reflected across the x-axis.

Algebraic Rule:

$$
(x, y) \rightarrow(x,-y)
$$

The points (3,2), (1,5), $(3,4)$ are reflected across $y=1$.

Notation:
$R_{y=1}$

Summarize with Algebraic Rules:

$(x, y) \rightarrow(x,-y)$
Reflection over x -axis

$$
(x, y) \rightarrow(-x, y)
$$

Reflection over y-axis
$(x, y) \rightarrow(-x,-y)$
Reflection over both axes
$(x, y) \rightarrow(y, x)$
$(x, y) \rightarrow(-y,-x)$
Reflection in $\mathrm{y}=\mathrm{x}$
Reflection across $y=-x$
Can you figure out this one on your own? Describe the reflection the results from the following algebraic rule $(x, y) \rightarrow(x, y)$

Reflection over x-axis then back over x-axis
OR Reflection over y-axis then back over y-axis

Tonight, remember to do...

1) Homework Listed on Outline: Packet p. 6-7 and p. 11-12 \#1, 4, 7, 10, 22 pages 11-12 are some Algebra review
2) Get onto Website and Print HW Packet Day 5-7 by Tuesday 9/6 honorsmath2greenhope.weebly.com
3) Get syllabus $\$$ honor code forms signed and completed
4) Get supplies for Class

- especially calculator \ddagger compass

