## Day 1: Introduction to Transformations and Translations

## Warm-Up:

# Transformations: Translations

A translation, or a slide, is the movement of a figure from one position to another without turning. To the right are examples of a horizontal slide and a vertical slide.

horizontal slide

Look at the figure below. Slide the figure 4 units to 6 units to the right the right and 4 units up. Draw the image on the graph.





# Prerequisite Skill: Graphing Lines

Graph the following lines.

- 1) x = 2
- 2) y = 4 🎉
- 3) y = x (Hint: this is y = 1x + 0)



#### Introduction to Transformations and Translations

| congruent figures have the same size and the same shape                      |
|------------------------------------------------------------------------------|
| When two figures are congruent, you can move one so that it fits exactly     |
| on the other one                                                             |
| Transformation of a geometric figure: change in its position, shape, or size |
| Preimage - Original figure  Notation: AFB                                    |
| Image - New or resulting figure  Notation: A'F'B'  Notation:                 |
| Transformation in which preimage and image are the Same Size and             |

Isometry - transformation in which preimage and image are the <u>Same Size</u> and <u>Same Shape</u> (also called: <u>rigid transformation / motion</u>)

Examples: 

Tanslaton, reflection, and rotation

Translation - an isometry that maps all points the <u>Same</u> <u>and istance</u> and the

direction

Activity 1: Patty Paper Translation

The translation T is defined by T(A) = B ... meaning that it slides the figure the distance AB in the direction that AB goes.

- 1) Place the patty paper over this page. Trace the triangle and points A and B.
- 2) Slide the patty paper along  $\overline{AB}$  so that the A on the patty paper is on top of B on this sheet and B on the patty paper is still on  $\overrightarrow{AB}$  on this sheet.
- 3) The position of the triangle on your patty paper now corresponds to the image of  $\Delta XYZ$  under the translation, T. If you press down hard with a sharp pencil, the image of the triangle can be seen on this page when you remove the patty paper.



Translation Vector - an arrow that indicates the distance and direction to translate a figure in a plane. AB in the activity above is an example of a translation vector.

The notation for a vector is:  $\langle -a, b \rangle$  for a translation a units to the left and b units up.

-for kft + for up (+for man+) (use - for down)

Three ways to describe a transformation (using example shown right): \*\*Always be specific when completing any type of description!!

- 1) Words: Translation to the right 10 units and down 4 units.
- 2) Algebraic rule (motion rule): T:  $(x, y) \rightarrow (x + 10, y 4)$
- 3) Vector: < 10,

| ٠ |   |    | »  | 6. | ĸ  |   |    |   | ٠  | <i>y</i> ". | ٠  | ŀ        | )  | r        | Ĭ    | 4  | با | تا  | *        |
|---|---|----|----|----|----|---|----|---|----|-------------|----|----------|----|----------|------|----|----|-----|----------|
| • |   | -  |    | •  | 1  |   |    |   |    |             | -  | Christa. | ø. | · .      | ~    |    | _  |     |          |
| • | - | ě  | *  | *  | ٠, | ÷ | ×. | å |    | <u> </u>    |    | · .      |    | *        | *    | ** | •  | ٠   | *        |
| 4 | Đ | ,  |    |    | ź  | Œ | r  | Þ | 34 | A. 1        | E, | A        | Æ  | 3        | B.** | à° | ,  | 4   | A        |
| Ŀ | ø | ı  | 4  | 9  | I  | ٠ | ŏ  | * | ¢  | *           | ٠  | ř        | 2  | 4        | ζ.   | ŀ  | 2  | å٠. | 4        |
|   | £ | L  |    |    | 4  | R | ь. |   | *  | *           | p  | •        | ٠  | e partie | €.   |    |    |     | ADW ?    |
|   |   | q  | 4  | 2  | ı  | ~ |    | 8 |    |             |    | 4        | 6  | **       | ٤.,  | 1  | ,  | 4   | 4        |
| , | ٠ | a  | ą. | Q  | ı  |   | ٠  | 4 | *  | D'          |    |          |    | ~        | ~·   | p  | v  | y   | *        |
| 4 | 4 | 4  | ÷  | ٠  | 1  | A | ¥  | ÷ |    | *           | ı  | 4        |    | L        | *    |    |    | 11  | ø        |
| ۰ |   | ,  | ¥  |    |    | • | v  | ь | ٠  | E'          | L  |          |    | 4        | B'   | 4  | ¥  | ď   | *        |
| _ | _ |    |    |    |    |   |    |   |    |             |    |          |    | ٠.       | _    |    |    | .,  | <b>5</b> |
| , |   | ٠  |    |    |    |   | ٠  |   |    | *           | 2  | -        |    | ı        | ٠    |    | 4  | *   | X.       |
|   |   |    | 6  | 8  | *  |   |    | 4 | ٠  | . **        | ar | *        | ٠  | ļ        | A    | ۵  | æ  |     | 4        |
|   |   | 4  | *  |    |    |   | ٠  | A | 4  |             | w  | 9        |    | ٠        |      |    | ä  | ٠   |          |
| * | 2 | 'n | ٠  |    | ,  |   | *  |   |    |             | ۵  | 9        | ٠  | ٠        | ٠    | 10 | ¥  | ø   | *        |

### Activity 2: Dot Paper Translations

- 1) Use the dots to help you draw the image of the first figure so that A maps to A'.
- 2) Use the dots to help you draw the image of the second figure so that B maps to B'.
- 3) Use the dots to help you draw the image of the third figure so that C maps to C'.
- 4) Complete each of the following translation rules using your mappings from 1 3 above.
  - a) For A, the translation rule is:

T:(x, y)  $\rightarrow$  (  $\times + 9$ 

b) For B, the translation rule is:

 $T:(x,y) \rightarrow (X-2, X)$ 

c) For C, the translation rule is:

 $T:(x,y) \rightarrow ($ 





Checkpoint:  $\triangle GEO$  has coordinates G(-2, 5), E(-4, 1) O(0, -2). A translation maps G to G'(3, 1). right 5, down4

- Find the coordinates of:

The translation rule is:

 $(x,y) \rightarrow (\underline{X} + 5, \underline{Y} - \underline{Y})$ 

3. Specifically describe the transformation: Translation