Unit 1 Day 10

Midsegments of Triangles
\& Isosceles and Equilateral Triangles

Warm Up

1. Simplify

$$
(x-7)(x+4)
$$

2. Solve for x.

$$
\frac{x}{x+5}=\frac{x+3}{x+13}
$$

3. Given a triangle with vertices $A(2,5), B(3,6)$ and $C(1,6)$, use the distance formula to decide whether triangle $A B C$ is scalene, isosceles, or equilateral. Show ALL work!!

$$
d^{2}=(\text { change in } x)^{2}+(\text { change in } y)^{2}
$$

4. Given $\overline{T S} \| \overline{Q R}$, explain why the triangles are similar and write a similarity statement. Then use TS = 6, PS =x+7, $Q R=8$, and $S R=x-1$, to find $P S$ and $P R$.

Warm Up ANSWERS

1. Simplify

$$
\begin{gathered}
(x-7)(x+4) \\
x^{2}-3 x-28
\end{gathered}
$$

2. Solve for x.

$$
\begin{aligned}
& \frac{x}{x+5}=\frac{x+3}{x+13} \\
& x=3 \text { (cross multiply and distribute - remember FOIL) }
\end{aligned}
$$

Warm Up ANSWERS

3. Given a triangle with vertices $A(2,5), B(3,6)$ and $C(1,6)$, use the distance formula to decide whether triangle ABC is
 scalene, isosceles, or equilateral. Show ALL work!!
$\sqrt{(1-3)^{2}+(6-6)^{2}}=2$
$\sqrt{(3-2)^{2}+(6-5)^{2}}=\sqrt{2}$
$(1-2)^{2}+(6-5)^{2}=\sqrt{2}$
Isosceles because 2 sides are congruent
$d^{2}=(\text { change in } x)^{2}+(\text { change in } y)^{2}$
4. Given $\overline{T S} \| \overline{Q R}$, explain why the triangles are similar and write a similarity statement. Then use TS = 6, PS = x +7 , $Q R=8$, and $S R=x-1$, to find PS and PR.
$\Delta T S P \sim \Delta Q R P$ by $A A \sim, P S=12, P R=16$
 **Remember to do full side : full side $=$ full side : full side

Day 9 Homework Answers

NO. The angles are not corresponding.
6)

8)

10)

$A A S \cong B e$ careful! The arrows mark parallel sides (not congruent ones)

Day 9 Homework Answers

Day 9 Homework Answers

State what additional information is required in order to know that the triangles are congruent for the reason given.
22) SAS

$$
\overline{I K} \cong \overline{X Z}
$$

24) SAS

25) SSS

$\overline{Z Y} \cong \overline{H X}$
26) SSS

27) SAS

$\overline{W Y} \cong \overline{B D}$

Day 9 Homework Answers

Solve for x.

22)

24)

26)

28)

Day 9 Homework Answers

29) Find the values of x and y given
$\angle \mathrm{ABD} \cong \angle \mathrm{CBD}, \mathrm{B}$ is midpoint of $\overline{\mathrm{AC}}$,

$$
\mathrm{m} \angle \mathrm{~A}=\mathrm{x}+5 \mathrm{y}+72, \mathrm{~m} \angle \mathrm{DBC}=120+8 \mathrm{x}-3 \mathrm{y}
$$

$\mathrm{m} \angle \mathrm{C}=76-\mathrm{x}$, and $\mathrm{m} \angle \mathrm{BDC}=11$.

30) Solve given L is the midpoint of
$\overline{\mathrm{KO}}$ and $\overline{\mathrm{MP}}, \mathrm{ML}=14 \mathrm{x}+2 \mathrm{y}, \mathrm{KL}=\mathrm{x}-5 \mathrm{y}$, $L P=10$, and $L O=11 . \quad x=1 \quad y=-2$

Tonight's Homework

- Packet p. 31-32 Even
- Packet p. 33-34 Odd
- STUDY FOR QUIZ TOMORROW!!

Notes: vidsegments and Isoscales virangles

Isosceles and Equilateral Triangles

Isosceles triangles are commonly found in the real world in buildings and bridges.

The congruent sides of an isosceles triangle are its legs. The third side is the base.

The two congruent sides form the vertex angle.
The other two angles are the base angles.

Base Angles

Isosceles Triangle Theorem

- If two sides of a triangle are congruent, then the angles opposite those sides are congruent.
- Ex. If $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$, then $\angle \mathrm{B} \cong \angle C$.

Converse of the

Isosceles Triangle Theorem

- If two angles of a triangle are congruent, then the sides opposite those angles are congruent.
- Ex. If $\angle \mathrm{B} \cong \angle C$, then $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$.

Example: Triangle $A B C$ is isosceles with vertex C. What is the value of x ? What is the measure of each angle?

Since triangle $A B C$ is isosceles with vertex C, its' base angles, Angle A and Angle B, are congruent.

$$
\begin{aligned}
2 x+40 & =3 x+22 \\
18 & =x
\end{aligned}
$$

$$
m<A=2 x+40=2(18)+40
$$

$$
\begin{aligned}
m<B & =3 x+22=3(18)+22 \\
& =76
\end{aligned}
$$

Corollary to Isosceles Triangle Theorem:

If a triangle is equilateral, then the triangle is equiangular.

$$
\begin{array}{r}
\text { Ex. If } \frac{\overline{A B}}{\text { Angle } A} \cong \overline{\overline{B C}} \cong \overline{C A} \text { Angle } B \cong \text { Angle } C .
\end{array}
$$

Example: Given triangle $A B C$, what is the measure of angle A?

60°

How would you define the midpoint of a segment?
A midpoint is a point that divides a segment into two congruent segments.

Midsegment of a triangle (the triangle doesn't have to be isosceles or equilateral):

A midsegment of a triangle is a segment connecting the midpoints of 2 sides. It measures half the length of the other side and is parallel to the other side.
$\overline{D E}$ is a midsegment of $\triangle A B C$
$D E=\frac{1}{2} C B$
and $\overline{D E} / / \overline{C B}$

Example 1: In triangle $A B C, M, J$, and K are midpoints

$$
\begin{array}{ll}
A B=30 & K J=\underline{15} \\
B C=\underline{50} & M K=\underline{25} \\
A C=\underline{40} & M J=20
\end{array}
$$

Example 2: $A B=10, C D=18$

$$
B C=\underline{10} \quad E B=\underline{9}
$$

Example 3: Given $m<A=42^{\circ}$,

Find $m \angle A M N=69$

$\mathrm{m} \angle A N M=69$

Example 4: In $\Delta X Y Z, M, N$, and P are midpoints.
The perimeter of $\triangle M N P$ is 60 . Find $X Y$ and $y Z$.

$$
X Y=28
$$

$$
y Z=44
$$

Practice...Directions: Find the values of the variables. You must show all work to receive full credit. Figures are not drawn to scale.

1. $x=8$
$y=\underline{10}$
$z=10$

2. $x=20$

3. $x=72$

4. $x=6.5$

5. $x=10$

6. $x=60 y=\underline{140}$

7. $x=50$

8. $x=32$

9. $x=6 \quad y=6.5$

10. $z=\underline{65}$
11. $x=\underline{40}$

12. Sadie is designing a kite. The diagonals measure 28 in and 48 in. She wants to decorate the mid-segments of the triangles formed by the diagonals with purple ribbon. How much ribbon must she purchase? Draw a picture! (Hint: Do you remember which sides are congruent on a kite?)
13. Find the perimeter of $\triangle A B C$.

Midsegments

15. One side of the Rock and Roll Hall of Fame is an isosceles triangle made up of smaller triangles based on mid-segments. The length of the base of the building is 229.5 feet.

What would the base of the bold triangle be?
57.375 ft.

A couple we may want to discuss from the Day 9 HW, if we haven't yet!

29) Find the values of x and y given
$\angle \mathrm{ABD} \cong \angle \mathrm{CBD}, \mathrm{B}$ is midpoint of $\overline{\mathrm{AC}}$,

$$
\mathrm{m} \angle \mathrm{~A}=\mathrm{x}+5 \mathrm{y}+72, \mathrm{~m} \angle \mathrm{DBC}=120+8 \mathrm{x}-3 \mathrm{y},
$$

$\mathrm{m} \angle \mathrm{C}=76-\mathrm{x}$, and $\mathrm{m} \angle \mathrm{BDC}=11$.

30) Solve given L is the midpoint of
$\overline{\mathrm{KO}}$ and $\overline{\mathrm{MP}}, \mathrm{ML}=14 \mathrm{x}+2 \mathrm{y}, \mathrm{KL}=\mathrm{x}-5 \mathrm{y}$, $L P=10$, and $L O=11 . \quad x=1 \quad y=-2$

Homework

- Packet p. 31-32 Even
- Packet p. 33-34 Odd
- STUDY FOR QUIZ TOMORROW!!

