Day 10: Midsegments, Isosceles Triangles

Warm-up:

1. Given a triangle with vertices A(2, 5), B(3, 6) and C(1, 6)

 $d^2 = (\text{change in } x)^2 + (\text{change in } y)^2$

6), use the distance formula to decide whether triangle ABC is scalene, isosceles, or equilateral.

Show ALL work!! J(AB) = J(2-3)2+(5-6)2 BC=1/01/2 +1/2=1/4=3

J(AC) = J(0-1) = + (5-6) = $AB = \sqrt{(1)^{2} + (1)^{2}} = \sqrt{3}$ $A(= \sqrt{(1)^{2} + (-1)^{2}} = \sqrt{3}$ $AB = \sqrt{3}, AC = \sqrt{3}, BC = 2$ $AB = \sqrt{3}, AC = \sqrt{3}, AC = \sqrt{3}, BC = 2$ $AB = \sqrt{3}, AC =$

2. Given $TS \parallel QR$, explain why the triangles are similar and write a similarity statement. Then use TS = 6, PS = x + 7, QR = 8, and SR = x - 1, to find PS and PR.

· LPTS = LPQR and LPST= LPRQ. (corresponding angles = when lines are/1)> · APTSNAPBR MAAN

2×+6

· use fullside fullside > 6 = X+7 7 PS= Fullside fullside & ax+6 for Midsegments, Isosceles Triangles Notes/Practice

Isosceles and Equilateral Triangles

Isosceles triangles are commonly found in the real world in buildings and bridges.

- The congruent sides of an isosceles triangle are its 1095
- The third side is the base
- The two congruent sides form the VLILON __
- The other two angles are the <u>Nase</u> _

Isosceles Triangle Theorem:

If two sides of a triangle are congruent, then the angles opposite those sides are congruent.

Ex. If
$$\overline{AB} \cong \overline{AC}$$
, then $\underline{LB} \cong \underline{LC}$

Converse of the Isosceles Triangle Theorem:

If two angles of a triangle are congruent, then the sides opposite those sides are congruent.

Ex. If <u>LB</u> = <u>LC</u>, then <u>AB</u> = <u>AC</u>.

Example: Triangle ABC is isosceles with vertex C. What is the value of x? What is the measure of each angle?

$$3x+40=3x+23$$

m CA+mcB+mc (=180

76 +76 + mc (=180

7152+MLC=180

Corollary to Isosceles Triangle Theorem:

If a triangle is equilateral, then the triangle is equiangular.

Example: Given triangle ABC, what is the measure of angle A?

50 3x=180 and x=60 50 m4/=60

How would you define the midpoint of a segment?

The midpoint of a segment divides a segment into 2 congruent segments.

Midsegment of a triangle (doesn't have to be isosceles or equilateral)

A midsegment of a triangle is a segment connecting the midpoints of 2 sides. It measures half the

length of the opposite side

Example 1: In triangle ABC, M, J, and K are midpoints

$$AB = 30$$
 $KJ = 15 = 3(30)$

$$BC = 50$$
 $MK = 25 3(50)$

Example 2: AB = 10, CD = 18

$$BC = 10$$

$$BC = 10 \qquad EB = 9$$

30

Example 3: Given $m < A = 42^{\circ}$,

$$4a + x + x = 180$$

 $2x = 138$
 $x = 69$

K

Example 4: In ΔXYZ , M, N, and P are midpoints.

The perimeter of ΔMNP is 60. Find XY and YZ.

Practice...Directions: Find the values of the variables. You must show all work to receive full credit. Figures are not drawn to scale.

1. x = 8 y = 10 z = 10USE

NOTE TO z = 10 z = 10 z = 10

20

$$3. x = \frac{20}{200}$$

$$= 10 \cdot 2$$

7.
$$x = 60 y = 140$$

x+1=10

13. Sadie is designing a kite. The diagonals measure 28 in and 48 in. She wants to decorate the mid-segments with purple ribbon. How much ribbon must she purchase? Draw a picture!

14. Find the perimeter of $\triangle ABC$.

44434134 7603

12+13+11.5 [36.5=Permekt] FAARC

5. One side of the Rock and Roll Hall of Fame is an isosceles triangle made up of smaller

triangles based on mid-segments. The length of the base of the building is 229.5 feet.

