

$y=3 \sin (2 x)+1$

A great white shark swims 22 feet below sea level. If the shark is 67.7 feet from a sailboat, what is the angle of depression from the boat to the shark?

Find the area of the plot of land shown below.

Street

From a point 100 feet

 from the base of abuilding, Angelica looks up
at a 40 degree angle to the
top of the building. She
walks 20 feet closer. At what angle must Angelica
now look up to see the top of the building?

$$
\begin{gathered}
\text { Find the } \\
\text { amplitude, } \\
\text { period, and } \\
\text { midline of } \\
y=-3 \cos (2 x)+1
\end{gathered}
$$

A new type of LED bicycle light can be attached to the spokes of the front wheel. When the bicycle moves at constant speed, a person

Safety Light Motion from the side would see the light following the pattern shown. What is the equation of the graph shown?

$\begin{array}{llllll}90^{\circ} & 180^{\circ} & 270^{\circ} & 360^{\circ} & 450^{\circ}\end{array}$
Distance traveled (inches)

Find the length across the lake ($B C$).

What is the measure of angle M ?

K

Suppose that for each foot of land along the street, the annual tax is $\$ 25$ per foot. How much is the annual tax for the plot?

Street

The short leg of a right

 triangle is 10 meters and the acute angles of the triangle are 25 degrees and 65 degrees. What is the measure of the longer leg of the triangle?

Find the

amplitude,
period, and
midline for
$y=\sin \left(\frac{1}{2} x\right)-3$

$$
\begin{aligned}
& \text { Write the equation } \\
& \text { of the following trig } \\
& \text { function. }
\end{aligned}
$$

Given a triangle with

$$
\begin{aligned}
& a=5, b=7 \text {, and } \\
& c=10, \text { find the } \\
& \text { largest angle. }
\end{aligned}
$$

Suppose you hold a kite 5 feet off the ground at an angle of elevation of 45 degrees. If you let out 225 feet of string, how high above the ground is the kite?

The hypotenuse of each right triangle shown below represents a ladder leaning against a building.

Find h, the distance from the base of the building to the
point where the shorter ladder
touches the building.

If RSTW is a rhombus, what is the area of triangle WXT? Hint: Remember diagonals of a rhombus are perpendicular.

$$
\begin{gathered}
\text { If } \\
2 \sin (\theta)+2=3, \\
\text { what are the } \\
\text { value }(s) \text { of } \theta, \\
\text { given } \\
0^{\circ} \leq \theta \leq 180^{\circ} ?
\end{gathered}
$$

A bird flies from the top of a 40 foot utility pole on a straight course to
the top of a post eight
feet tall. If the angle of depression from the
utility pole to the post is
50 degrees, how far did the bird fly?

$$
\begin{gathered}
\text { Given } \\
\cos (x)=2 \sin (x) \cos (x), \\
\text { what are the } \\
\text { value(s) of } x \text {, given } \\
0^{\circ} \leq x \leq 180^{\circ} ?
\end{gathered}
$$

C

James is standing 10 meters away from Samantha. A bird is located in the sky at a point between where James and Samantha are standing. James is looking up at the bird at an angle of elevation of 74 degrees. Samantha is looking up at the bird at an angle of elevation of 47 degrees. How far away is the bird from Samantha?

$$
\begin{gathered}
\text { If } \\
\cos 2 x=\frac{\sqrt{3}}{2} \\
\text { what are the value(s) } \\
\text { of } x, \text { given } \\
0^{\circ} \leq x \leq 180^{\circ} ?
\end{gathered}
$$

N, Q, F, P, K, A, B, G, C, I, T, S, D, J, L, M, E, O, H, R

