Ch. 7 Jeopardy

come		remisem	mimb	cesmemm
10	10	10	10	10
$\underline{20}$	$\underline{20}$	$\underline{20}$	$\underline{20}$	20
30	$\underline{30}$	30	30	30
40	40	40	40	40
50	$\underline{50}$	50	50	50

Find the domain, range, and vertical and horizontal asymptotes.

$$
\begin{gathered}
f(x)=\frac{-8}{x-2} \\
D:(-\infty, 2) \cup(2, \infty) \\
R:(-\infty, 0) \cup(0, \infty) \\
V A: x=2 \\
H A: y=0
\end{gathered}
$$

Find the domain, range, and

 Tell how it was changed from the parent graph.$$
\begin{gathered}
f(x)=\sqrt{x+4}+2 \\
D:[-4, \infty) \\
R:[2, \infty) \\
\text { Translated left 4, up 2 }
\end{gathered}
$$

Find the domain, range, and Tell how it was changed from the parent graph.

$$
\begin{aligned}
& f(x)=-\sqrt[3]{x-5}-4 \\
& D:(-\infty, \infty) \\
& R:(-\infty, \infty) \\
& \text { Right } 5, \text { down 4, reflection over } x \text {-axis }
\end{aligned}
$$

Find the domain, range, and

 Tell how it was changed from the parent graph.$$
f(x)=3[x+2]-1
$$

$D:(-\infty, \infty)$
R : Integers multiples of 3
Steps have a height of 3 and start at ($-2,-1$)

Put the function in a form easier to graph. Then, find the domain, range, and Tell how it was changed from the parent graph.

$$
\begin{aligned}
& f(x)=-\sqrt{25 x-100}+6 \\
& y=-5 \sqrt{x-4}+6 \\
& D:[4, \infty) \\
&:(-\infty, 6] \\
& \text { Reflected over } x \text {-axis, right } 4 \\
& \text { up } 6, \text { and stretched by } 5 \text { vertically }
\end{aligned}
$$

Is the following a direct or inverse variation?

 Write the equation for the variation.$$
\begin{array}{ccc}
\mathbf{X} & \mathbf{Y} & \\
\mathbf{2} & \mathbf{4} & \\
\mathbf{4} & \mathbf{8} & \text { Direct } \\
10 & 20 & y=2 x \\
12.5 & 25 &
\end{array}
$$

Does the data show direct or inverse variation? Use this information to find the missing value.

$$
\begin{array}{ccccc}
\mathrm{x} & 0.5 & -0.5 & 20 & -1 \\
\mathrm{y} & 10 & -10 & ? & -5
\end{array}
$$

Inverse

$$
y=\frac{5}{x}, \text { so } y=\frac{1}{4}
$$

In kick boxing, it is found that the force, f, needed to break a board, varies inversely with the length, I, of the board. If it takes 5 lbs of pressure to break a board 3 feet long, how many pounds of pressure will it take to break a board that is 12 feet long? (Round to the nearest hundredth if necessary.)

$$
\begin{aligned}
& (5,3) \text { and }(x, 12) \\
& 5(3)=12 x \quad \text { or use } y=\frac{k}{x} \text { method }
\end{aligned}
$$

Find x when $\mathrm{y}=5$, if y varies inversely as x and $x=6$ when $y=-18$

$y=\frac{k}{x}$
$-18=\frac{k}{6}$
$\stackrel{\rightharpoonup}{ } k=-108$

$$
y=\frac{-108}{x}
$$

$$
5=\underline{-108}
$$

$$
\text { OR use } x_{1} y_{1}=x_{2} y_{2}
$$

$$
x=-21.6
$$

Scientists have concluded that the pulse rate of mammals is a power function of their body weight. Find the power function to model the following data. Then use the model to predict the pulse rate for a 450 kg horse.

Mammal	Body Weight $(\mathbf{k g})$	Pulse Rate (beats/min)
Rat	0.2	420
Guinea Pig	0.3	$300 \quad y=231.20 x^{-2969}$
Rabbit	2	205
Small Dog	5	$120 \quad y=231.20(450)^{-2969}$
Large Dog	30	$85 \quad=37.7$ beats $/ \mathrm{min}$
Sheep	50	70
Human	70	72

Evaluate f(-3), f(0), and f(5):

$$
\begin{gathered}
f(x)=\left\{\begin{array}{c}
-\sqrt{x+4}+2, x>-3 \\
5, \quad x \leq-3 \\
f(-3)=5 \\
f(0)=0 \\
f(5)=-1
\end{array}\right.
\end{gathered}
$$

Evaluate $g(1.5), g(-2.7)$ and $g(0)$ for

$$
\begin{aligned}
& g(x)=x=[x] \\
& g(1.5)=1 \\
& g(-2.7)=-3 \\
& g(0)=0
\end{aligned}
$$

Identify the domain and range of the piecewise function shown

$D:(-\infty, 6]$
$R:[0, \infty)$

Write a piecewise function for the graph shown

$$
f(x)=\left\{\begin{array}{c}
x^{2} \text { if } x<2 \\
6 \text { if } x=2 \\
10-x \text { if } 2<x \leq 6
\end{array}\right.
$$

Evaluate $f(x+3)-f(x)$ given:

$$
\begin{aligned}
& f(x)=x^{2}+2 \\
& \left((x+3)^{2}+2\right)-\left(x^{2}+2\right) \\
& ((x+3)(x+3)+2)-\left(x^{2}+2\right) \\
& \left(x^{2}+6 x+11\right)-x^{2}-2 \\
& 6 x+9
\end{aligned}
$$

Solve

$$
[4 x-1]=5
$$

$$
\left[\frac{3}{2}, \frac{7}{4}\right)
$$

Solve

$$
\begin{gathered}
\frac{k}{k+1}+\frac{k}{k-2}=2 \\
k=-4
\end{gathered}
$$

Solve:

$$
2[3 x-2]=14
$$

$$
\left[3, \frac{10}{3}\right)
$$

Solve:

$$
\begin{aligned}
& \frac{1}{x-5}=\frac{x}{x^{2}-25} \\
& \text { No solution } \\
& (x=5 \text { is an Excluded Value })
\end{aligned}
$$

Solve:

$$
\frac{7 x+3}{x^{2}-8 x+15}+\frac{3 x}{x-5}=\frac{-1}{x-3}
$$

$$
x=-\frac{2}{3}, 1
$$

Solve the equation. Check for any extraneous solutions.

$$
x=-125
$$

Solve the equation. Check for any extraneous solutions.

$$
\sqrt[3]{x+4}=\sqrt[3]{3 x-10}
$$

Solve the equation. Check for any extraneous solutions.

Solve the equation. Check for any extraneous solutions.

$$
\sqrt{2 x}-\sqrt{x^{2}-24}=0
$$

Solve the equation. Check for any extraneous solutions.

$$
\begin{gathered}
(x+5)^{\frac{1}{6}}+3=0 \\
\text { No Solution }
\end{gathered}
$$

