Day 8 Homework Part 1

HW Directions: The following problems deal with congruency and rigid motion. The term "rigid motion" is also known as "isometry" or "congruence transformations."

1. In the diagram at the right, a transformation has occurred on $\triangle A B C$.
a) Describe a transformation that created image $\triangle A^{\prime} B^{\prime} C^{\prime}$ from $\triangle A B C$.
b) Is $\triangle A B C$ congruent to $\Delta A^{\prime} B^{\prime} C^{\prime}$? \qquad Explain.

2. The vertices of $\triangle M A P$ are $\mathrm{M}(-8,4), \mathrm{A}(-6,8)$ and $\mathrm{P}(-2,7)$. The vertices of $\Delta M^{\prime} A^{\prime} P^{\prime}$ are $\mathrm{M}^{\prime}(8,-4), \mathrm{A}^{\prime}(6,-8)$ and $\mathrm{P}^{\prime}(2,-7)$.
a) Plot $\Delta M^{\prime} A^{\prime} P^{\prime}$.
b) Verify that the triangles are congruent (using a ruler or distance formula and protractor).
c) Describe a rigid motion that can be used to $M^{\prime} A^{\prime} \mathrm{P}^{\prime}$
3. Given $\triangle P Q R$ with $\mathrm{P}(-4,2), \mathrm{Q}(2,6)$ and $\mathrm{R}(0,0)$ is congruent to $\triangle S T R$ with $S(2,-4), T(6,2)$ and $R(0,0)$.
a) $\operatorname{Plot} \triangle S T R$.
b) Describe a rigid motion which can be used to verify the triangles are congruent.

4. Given $\Delta R S T$ with $\mathrm{R}(1,1), \mathrm{S}(4,5)$ and $\mathrm{T}(7,5)$.
a) Plot the reflection of Δ RST in the y-axis and label it $\Delta R^{\prime} S^{\prime} T^{\prime}$.
b) Is $\Delta \mathrm{RST}$ congruent to $\Delta R^{\prime} S^{\prime} T^{\prime}$? \qquad Explain.

c) Plot the image of $\Delta R^{\prime} S^{\prime} T^{\prime}$ under the translation $(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}+4, \mathrm{y}-8)$. Label the image of $\Delta R " S " T "$.
d) Is $\Delta \mathrm{R}^{\prime} \mathrm{S}^{\prime} \mathrm{T}^{\prime}$ congruent to $\Delta R^{\prime \prime} S^{\prime \prime} T "$? \qquad Explain.
e) Is $\Delta \mathrm{RST}$ congruent to $\Delta R " S " T$? \qquad Explain.
5. Given $\triangle D F E$ with $\mathrm{D}(1,-1), \mathrm{F}(9,6)$ and $\mathrm{E}(5,7)$ and $\triangle B A T$ with $\mathrm{B}(1,1), \mathrm{A}(-6,9)$ and $\mathrm{T}(-7,5)$.
a) Describe a transformation that will yield $\triangle B A T$ as the image of $\triangle D F E$.

b) Is \triangle BAT congruent to $\triangle D F E$? \qquad Explain.
6. Given $\triangle C A P$ with $\mathrm{C}(-4,-2), \mathrm{A}(2,4)$ and $\mathrm{P}(4,0)$ and $\Delta S U N$ with $\mathrm{S}(-8,-4), \mathrm{U}(4,8)$ and $\mathrm{N}(8,0)$.
a) Plot $\triangle C A P$ and $\triangle S U N$.
b) Describe a transformation that will yield $\triangle S U N$ as the image of $\triangle C A P$.
c) Is $\triangle C A P$ congruent to $\triangle S U N$? \qquad Explain.

Day 8 Homework Part 2 and Day 9 Homework Part 1

State if the two triangles are congruent. If they are, state how you know.
1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

19)

18)

20)

State what additional information is required in order to know that the triangles are congruent for the reason given.
21) SSS

23) SSS

25) SSS

27) SSS

29) SAS

22) SAS

24) SAS

26) SSS

28) SSS

30) SAS

Day 9 Homework Part 2

Solve for the missing value.

21)

23)

25)

27)

29) Find the values of x and y given
$\angle \mathrm{ABD} \cong \angle \mathrm{CBD}, \mathrm{B}$ is midpoint of $\overline{\mathrm{AC}}$,
$\mathrm{m} \angle \mathrm{A}=\mathrm{x}+5 \mathrm{y}+72, \mathrm{~m} \angle \mathrm{DBC}=120+8 \mathrm{x}-3 \mathrm{y}$,
$\mathrm{m} \angle \mathrm{C}=76-\mathrm{x}$, and $\mathrm{m} \angle \mathrm{BDC}=11$.

24)

26)

28)

30) Solve given L is the midpoint of $\overline{\mathrm{KO}}$ and $\overline{\mathrm{MP}}, \mathrm{ML}=14 \mathrm{x}+2 \mathrm{y}, \mathrm{KL}=\mathrm{x}-5 \mathrm{y}$, $L P=10$, and $L O=11$.

4. Find the values of the variables in the diagrams below:
a.

(2)

5. In $\triangle D E F, m \angle D=(5 x+11)^{\circ}, m \angle E=(9 x-33)^{\circ}$, and $m \angle F=(4 x+4)^{\circ}$. What type of triangle is $\triangle D E F$? Explain your reasoning.
6. Write the name of the postulate/theorem used to prove the following triangles congruent:
a.

b.

d.

1. Solve for x given $B D=\frac{5}{2} x+3$ and $A E=$ $6 x+4$. Assume B is the midpoint of $\overline{A C}$ and D is the midpoint of $\overline{C E}$.

2. Find the area of the rectangle if $\overline{A C}=11$ and $\overline{B D}=22$.

3. Solve for x given $B D=\frac{7}{2} x+2$ and $A E=$ $3 x+6$. Assume B is the midpoint of $\overline{A C}$ and D is the midpoint of $\overline{C E}$.

4. Find the values of x and y.

5. If the midpoints of the sides of a triangle are connected, the area of the triangle formed is what part of the area of the original triangle?
6. In the diagram below of $A B C, D E$ is a midsegment of triangle $A B C$, $D E=7, A B=10$, and $B C=13$. Find the perimeter of $A B C$.

Find the values of the variables.

1. $\triangle \mathrm{ABC} \sim \triangle \mathrm{FED}$
2. $\triangle G H I \cong \triangle J K L, \angle G \cong \angle I$

For \#3 and 4, use A (1, -1), B (4, -1), and C (2, 2),
3. A composition of a reflection over $y=1$, then over $y=-2$
a) complete the composition
b) describe specifically how 1 transformation could complete the composition in part a.
c) give the algebraic rule for the transformation in part b.
4. A composition of a reflection over $y=-x$, then over $y=x$
a) complete the composition
b) describe specifically how 1 transformation could complete the composition in part a.
c) give the algebraic rule for the transformation in part b.

Given the triangles shown are similar, $m \angle A D E=m \angle C$, and $m \angle A E D=m \angle B$.
5. Write a similarity statement.
6. Find x if $D C=18, A D=6, A E=12, E B=x-3$
7. Solve if $A C=30, A D=10, A E=22, E B=x+4$

8. The lengths of the sides of a triangle are 8, 12, and 16. If the length of the shortest side of a similar triangle is 6 , find the length of its longest side.
9. The sides of a triangle are 8,10 , and 12. Find the perimeter of a similar triangle in which the side corresponding to the longest side in the first triangle is 30 .

Find the missing sides of each pair of similar triangles.
10. $\triangle A C B \sim \triangle F E D$

Solve for the values of the variables.
12. $\triangle A C D \sim \triangle A B E$

13. $\triangle \mathrm{FHI} \sim \Delta \mathrm{FGJ}$

Identify the transformation as a reflection, rotation, translation, or a composition of a translation and a reflection. Be specific in your descriptions.
14. $\square A B C D \rightarrow \square G H C D$
15. $\square H G J I \rightarrow \square L M J K$
16. $\square G F E D \rightarrow \square R Q O P$
17.
$\square M N O P \rightarrow \square A B C D$
18. Find a single transformation that has the same effect as the composition 〈 7, 4〉 followed by $\langle-2,4\rangle$. Be specific in your description.

19. In $\triangle R S T, M$ is the midpoint of $\overline{R S}, N$ is the midpoint of $\overline{S T}$, and P is the midpoint of $\overline{R T}$. Find the perimeter of $\triangle M N P$ if $R S=28, S T=34$, and $R T=30$. (Hint: Draw a picture! $\cdot)$)

Day 12 Homework

1. Point C lies on $\overline{A B}$ such that $A C=\frac{1}{4} A B$. If the endpoints of $\overline{A B}$ are $A(8,12)$ and $B(-4,0)$, find the coordinates of C. (Hint: use graph paper!)
2. Suppose $\overline{P Q}$ has endpoints $P(2,3)$ and $Q(8,-9)$. Find the coordinates of R and S so that R lies between P and S and $\overline{P R} \cong \overline{R S} \cong \overline{S Q}$. (Hint: use graph paper!)
3. In the figure below, $\overline{E C}$ bisects $\overline{A D}$ at C, and $\overline{E F}$ bisects $\overline{A C}$ at B. For each of the following, find the value of x and the measure of the indicated segment.
a) $A B=3 x+6, B C=2 x+14 ; \overline{A C}$
b) $A C=5 x-8, C D=16-3 x ; \overline{A D}$
c) $A D=6 x-4, A C=4 x-3 ; \overline{C D}$
d) $A C=3 x-1, B C=12-x ; \overline{A B}$
e) $A D=5 x+2, B C=7-2 x ; \overline{C D}$

f) $A B=4 x+17, C D=25+5 x ; \overline{B C}$
4. A rectangle has vertices $A(-1,1), B(3,4), C(6,0)$, and $D(2,-3)$.
a. Graph the rectangle on separate sheet of graph paper.
b. Find the area and perimeter of the rectangle (be specific - you may need the distance formula!!)
5. IF GJ $=32$, find:
a. X
b. GH

c. HJ
6. In the figure, the shaded region is a planar cross-section of the rectangular solid. What is the area of the cross-section to the nearest square inch?

a. 220 square inches
c. 57,612 square inches
b. 3,225 square inches
d. 112,000 square inches
7. A right circular cone with diameter of base 8 centimeters and height 12 centimeters is shown. What is the radius of the cross-section that occurs 6 centimeters from the vertex, parallel to the base?

a. 2 centimeters
b. 4 centimeters
c. 6 centimeters
d. 8 centimeters
8. Challenge: The shaded area in the figure below is a planar cross section of the pyramid. The pyramid's edges are all 16 centimeters long and the base of the pyramid is a square. (The figure may not be drawn to scale.) What is the perimeter of the cross section?

9. Find the values of x and y given
$\triangle R S T \cong \triangle U V W, m \angle T=3 x+2 y, m \angle S=9$, and $m \angle W=x+y+6$.

Day 13 Homework

Unit 1 Test Review
For exercises 1-6, use $\triangle A B C$. Write the coordinates of each image, then write its algebraic rule. Show work on separate graph paper, as needed.

1. a dilation four times the original size
2. a rotation of 90°
3. a rotation of 180°

4. a translation 2 units left and 3 units down
5. a reflection in the x-axis
6. a reflection over $y=-x$

Given the similar triangles shown, determine the scale factor, write a similarity statement, and explain why the triangles are similar.
7.

8.

If $\triangle P G J \sim \Delta P Q R$, determine the values of x and y.
9. $P J=6$
$J G=5$
$P G=4$
$G Q=x$
$R Q=x+6$
$J R=y$
10. $R Q=10$
$J G=8$
$J R=x$
$P J=2 x+1$
$P G=2 y$
$P Q=5 y-2$

11. If $A D=12$ and $A C=4 y-36$, find y, AC and DC.

12. Given $m \angle A O C=7 x-2, m \angle A O B=2 x+8$, and $m \angle B O C=3 x+14$, find $m \angle A O C$.

13. Solve for a and b.

$a=$ \qquad , $b=$ \qquad
14. Solve for a and b.

$a=$ \qquad , $b=$ \qquad
15. Find the height of the tree using a proportion.

16. Specifically describe a single translation that has the same effect as the composition: <6, $5>$ followed by <-4, 5>.
17. $\Delta T N Q \sim \Delta L N P$. Find x and y.

18. Given points $M(1,2), A(1,-1)$, and $\mathrm{T}(3,2)$,

a. Draw and Label \triangle MAT.
b. Draw the reflection of $\triangle \mathrm{MAT}$ across the line $y=-2$. Label this $\Delta M^{\prime} A^{\prime} T^{\prime}$.
c. Draw the reflection of $\triangle M A T$ across the line $x=4$. Label this $\Delta \mathrm{M}^{\prime \prime} \mathrm{A}^{\prime \prime} \mathrm{T}^{\prime \prime}$.
19. Find x and y.

20. Find the length of $B D$ given that
$A E=4 x+6$ and $B D=x+4$. B is the midpoint of $\overline{A C}$ and D is the midpoint of $\overline{C E}$.
21. Find the type of the cross section when a plane parallel to the base passes through the prism shown.
a.
b.

c.

d.

Can the triangles be proven congruent? If so, write the congruence statement and state which postulate can be used to prove them congruent.
22.

$\Delta \mathrm{EGF} \cong$ \qquad by \qquad
24. $\overline{\mathrm{AD}} \cong \overline{\mathrm{CD}}$

$\triangle A B D \cong$ \qquad by \qquad
23. $\overline{\mathrm{BE}}$ bisects $\overline{\mathrm{AD}}, \overline{\mathrm{BC}} \cong \overline{\mathrm{CE}}$

$\triangle A B C \cong$ by \qquad
25. R is the midpoint of $\overline{\mathrm{QS}}$ and

$$
\overline{\mathrm{PQ}} \cong \overline{\mathrm{PS}}
$$

$\triangle P Q R \cong$ by \qquad

Algebra Review: Simplifying Square Roots

Part I: Square Roots of Perfect Squares: Below you will find the most commonly used perfect squares. Complete each statement.

1. $\sqrt{169}$
2. $\sqrt{324}$
3. $\sqrt{400}$
4. $\sqrt{81}$
5. $\sqrt{36}$
6. $\sqrt{4}$
7. $\sqrt{144}$
8. $\sqrt{361}$
9. $\sqrt{121}$
10. $\sqrt{256}$
11. $\sqrt{196}$
12. $\sqrt{441}$
13. $\sqrt{100}$
14. $\sqrt{64}$
15. $\sqrt{25}$
16. $\sqrt{225}$
17. $\sqrt{625}$
18. $\sqrt{289}$
19. $\sqrt{16}$
20. $\sqrt{9}$
21. $\sqrt{49}$
22. $\sqrt{576}$
23. $\sqrt{1}$

Part II: Read the following example problem

 about Simplifying Square Roots.Example Simplify $3 \sqrt{50}$

1) 50 is not a perfect square, so our answer we will not be an integer.
2) $3 \sqrt{50}=3 \sqrt{25 \bullet 2}$
3) $\quad=3 \sqrt{25} \cdot \sqrt{2}$
4) $=3 \cdot 5 \sqrt{2}$
5) $=15 \sqrt{2}$
6) $\sqrt{2}$ cannot be simplified further, so $15 \sqrt{2}$ is our answer

Steps Explained Here:

1) First, check the radicand. If the radicand is a perfect square, then your answer will be an integer.
2) Factor your radicand into a perfect square and the other factor.
3) Your factored radical can be broken up into your perfect square radical times the other radical.
4) Simplify your perfect square.
5) Multiply coefficients (front numbers) together.
6) Before finishing, always check that your radical cannot be simplified any further!!

Part III: Simplify Square roots! Show ALL work! Use separate paper, if needed.
24. $\sqrt{135}$
25. $\sqrt{32}$
26. $\sqrt{48}$
27. $-\sqrt{60}$
28. $\sqrt{147}$
29. $6 \sqrt{128}$
30. $9 \sqrt{112}$
31. $3 \sqrt{162}$

