Day 5 - Homework Part 1

Graph the image of the figure using the transformation given AND write the algebraic rule.

1) rotation 90° counterclockwise about the origin

2) translation: 4 units right and 1 unit down

Algebraic Rule:
3) translation: 1 unit right and 1 unit up

4) reflection across the x-axis

Algebraic Rule:

Write a verbal description and a motion rule, as requested, to describe each transformation.
5)

6)

Description:

Algebraic
Rule:
Description:
7)

8)

Description:

Algebraic
Rule:

Description:

Algebraic
Rule:

Graph the image of the figure using the transformation given and write the algebraic rule.
9) rotation 90° clockwise about the origin $B(-2,0), C(-4,3), Z(-3,4), X(-1,4)$

Algebraic Rule:
10) reflection across $y=x$
$K(-5,-2), A(-4,1), I(0,-1), J(-2,-4)$

Find the coordinates of the vertices of the figure using the transformation given and write the algebraic rule, as requested.
11) rotation 180° about the origin
$E(2,-2), J(1,2), R(3,3), S(5,2)$
Vertices:
12) reflection across $y=2$
$J(1,3), U(0,5), R(1,5), C(3,2)$
Vertices:

Algebraic Rule:
13) translation: 7 units right and 1 unit down
$J(-3,1), F(-2,3), N(-2,0)$
Vertices:
14) translation: 6 units right and 3 units down $S(-3,3), C(-1,4), W(-2,-1)$

Vertices:

Algebraic Rule:

Unit 1 Transformations with Coordinates Review

Part 1: Graph the pre-image and image on the graph below AND label the vertices. Then, write a description of the transformation given by the coordinates below. Finally, write an algebraic rule for the transformation. (Hint: for help with the Algebraic Rules, look at earlier packet pages.)

The coordinates of $\triangle A B C$ are

$$
\mathrm{A}(2,1), \mathrm{B}(3,5), \mathrm{C}(0,4) .
$$

1.

The coordinates of $\triangle A^{\prime} B^{\prime} C^{\prime}$ are

$$
\mathrm{A}^{\prime}(2,-1), \mathrm{B}^{\prime}(3,-5), \mathrm{C}^{\prime}(0,-4)
$$

Description: \qquad
Algebraic Rule: \qquad

The coordinates of $\triangle A B C$ are

3. $\mathrm{A}(-3,-2), \mathrm{B}(-2,3), \mathrm{C}(1,3)$.

The coordinates of $\triangle A^{\prime} B^{\prime} C^{\prime}$ are $\mathrm{A}^{\prime}(-6,-4), \mathrm{B}^{\prime}(-4,6), \mathrm{C}^{\prime}(2,6)$.

Description: \qquad
Algebraic Rule: \qquad

The coordinates of $\triangle A B C$ are
$\mathrm{A}(-2,3), \mathrm{B}(4,0), \mathrm{C}(-1,-4)$.
The coordinates of $\triangle A^{\prime} B^{\prime} C^{\prime}$ are

$$
\mathrm{A}^{\prime}(0,0), \mathrm{B}^{\prime}(6,-3), \mathrm{C}^{\prime}(1,-7) .
$$

Description: \qquad
Algebraic Rule: \qquad

The coordinates of $\triangle A B C$ are
4. $\mathrm{A}(-3,1), \mathrm{B}(-2,-1), \mathrm{C}(2,2)$.

The coordinates of $\triangle A^{\prime} B^{\prime} C^{\prime}$ are
$\mathrm{A}^{\prime}(-6,2), \mathrm{B}^{\prime}(-4,-2), \mathrm{C}^{\prime}(4,4)$.
Description: \qquad
Algebraic Rule: \qquad

The coordinates of $\triangle A B C$ are
5. $\mathrm{A}(-1,1), \mathrm{B}(0,3), \mathrm{C}(-3,1)$.

The coordinates of $\triangle A^{\prime} B^{\prime} C^{\prime}$ are
$\mathrm{A}^{\prime}(1,1), \mathrm{B}^{\prime}(3,0), \mathrm{C}^{\prime}(1,3)$.
Description: \qquad
Algebraic Rule: \qquad

The coordinates of $\triangle A B C$ are
6.
$\mathrm{A}(-3,0), \mathrm{B}(-2,3), \mathrm{C}(1,-3)$.
The coordinates of $\triangle A^{\prime} B^{\prime} C^{\prime}$ are
$\mathrm{A}^{\prime}(6,0), \mathrm{B}^{\prime}(4,-6), \mathrm{C}^{\prime}(-2,6)$.

Description:

\qquad
Algebraic Rule: \qquad

Part 2: Describe the transformations on the graph verbally and by writing an algebraic rule. Hint: The triangle with dotted lines is the preimage.
7.

Description: \qquad
Algebraic Rule: \qquad
10.

Description: \qquad

Algebraic Rule: \qquad
8.

Description: \qquad
Algebraic Rule: \qquad
11.

Description: \qquad

Algebraic Rule: \qquad Algebraic Rule: \qquad

Part 3: Given the description, write an algebraic rule to represent the transformation. Then graph the pre-image and image on the graph below. Use $\triangle A B C$ with $A(2,-2), B(3,1)$, and $C(1,2)$.
13) $\triangle A B C$ is dilated by 2

Algebraic Rule:
15) $\triangle A B C$ is rotated 180° then stretched dilated by a factor of two.

Algebraic Rule:
17) $\triangle A B C$ is reflected over $y=-x$ and moved up 2

Algebraic Rule: \qquad
14) $\triangle A B C$ is moved up 4 and 2 to the right

Algebraic Rule: \qquad
16) $\triangle A B C$ is reflected over the y-axis then enlarged by two.

Algebraic Rule: \qquad
18) $\triangle A B C$ is reflected over the x-axis, then dilated by $\frac{1}{2}$, then moved down 2 and left 1.

Algebraic Rule: \qquad

Day 6 Homework - Similarity Practice

State if the triangles in each pair are similar. If so, state how you know they are similar and complete the similarity statement.
1)

$\triangle A B C \sim$ \qquad by \qquad
3)

$\triangle E F G \sim$ by \qquad
2)

$\triangle R Q P \sim$ \qquad by \qquad
4)

$\triangle J K L \sim$ _ by \qquad

Given the information below, solve for the length of the missing segment in the similar triangles.
9) $\triangle D B C \sim \triangle F H G$

10) $\overline{\mathrm{VW}} / / \overline{\mathrm{KL}}$

11) $\triangle \mathrm{LHK} \sim \triangle \mathrm{FHG}$

12) $\overline{L M} / / \overline{C D}$

14) Given $\Delta H I J \sim \Delta K L M$. Find x, y, and the measure of each angle.
Angle $\mathrm{H}=20^{\circ}$
Angle $K=4 x-y$
Angle $J=-2 x-2 y$
Angle $M=10^{\circ}$

Day 7 - Homework

Are the triangles similar? If so, complete the similarity statement and explain why they are similar. If not, explain why.
5)

6)

\qquad
by \qquad

$\Delta L K J \sim$ \qquad
by \qquad
7)

8)

$\Delta S R Q \sim$
by \qquad
\qquad
by \qquad

Given the information below, solve for the length of the missing segment in the similar triangles.
13) $\triangle L M N \sim \triangle U V W$

14) $\overline{Q P} / / \overline{D E}$

15) $\overline{L K} / / \overline{P Q}$

16) $\overline{B A} / / \overline{L K}$

Unit 1 Packet
17) $\triangle P Q R \sim \triangle B C D$

18) $\triangle U T S \sim \triangle M L K$

Solve each extended proportion for x and y with $x>0$ and $y>0$.
19) $\frac{x}{5}=\frac{9}{y}=\frac{y}{25}$

$$
\text { 20) } \frac{x}{6}=\frac{x+10}{18}=\frac{4 x}{y}
$$

21) The two quadrilaterals below are similar. Find x, y, and the measure of each angle.

Angle $B=10^{\circ}$
Angle $F=4 x+2 y$
Angle $C=10 x-10 y$
Angle $G=130^{\circ}$

22) Quadrilateral "MORE" is similar to Quadrilateral "SALT". Match the descriptions below with a value given in the list on the right by writing its letter in the box provided.

The length of segment TL
ER corresponds to this segment MO corresponds to this segment EM corresponds to this segment

The length of segment MO
RO corresponds to this segment

a. TS
b. TL
c. 6 cm
d. 7.5 cm
e. SA
f. LA

