## Day 1 Homework Part 1

Graph the image of the figure using the transformation given and write the algebraic rule.

1) translation: 1 unit left

2) translation: 3 units right

3) translation: 5 units up
$U(-3,-4), M(-1,-1), L(-2,-5)$

4) translation: 1 unit right and 2 units down


Algebraic Rule:
4) translation: $\langle 1,-2\rangle$


Algebraic
Rule:
6) translation: $\langle 0,3\rangle$

$$
R(-4,-3), D(-4,0), L(0,0), F(0,-3)
$$



Algebraic Rule:

Find the coordinates of the vertices of each figure after the given transformation and write the algebraic rule.
7) Translation: 2 units left and 1 unit down $Q(0,-1), D(-2,2), V(2,4), J(3,0)$

Vertices:

## Algebraic Rule:

9) Translation: $\langle-4,4\rangle$

$$
J(-1,-2), A(-1,0), N(3,-3)
$$

Vertices:
8) Translation: 2 units down
$D(-4,1), A(-2,5), S(-1,4), N(-1,2)$
Vertices:

Algebraic Rule:
10) Translation: 3 units right and 4 units up $Z(-4,-3), I(-2,-2), V(-2,-4)$
Vertices:

Algebraic Rule:
Algebraic Rule:

Write a specific description of each transformation and give the algebraic rule.
11)

Description:
Algebraic
Rule:
13)


Description:

Algebraic
Rule:
14)


Description:

Algebraic
Rule:

## Day 1 Homework Part 2: Geometry Review

1. In the segment below, another name
for $\overline{A B}$ is $\qquad$
2. Using the segment below, the notation AC means
$\qquad$
$\qquad$
$\xrightarrow[A]{B}$
3. Segment Addition Postulate:

In the segment below,
$\mathrm{AB}=2 x+9, \mathrm{BC}=4 x-7, \mathrm{AC}=38$
What does $x$ equal?
$x=$ $\qquad$
$\rightarrow \quad B$

## 4. Definition of a Midpoint:

In the segment below,
$B$ is the midpoint of $A C$.
$\mathrm{AB}=4 x+2, \mathrm{BC}=6 x-8$
What do $x$ and AC equal?
$x=$ $\qquad$ $\mathrm{AC}=$ $\qquad$
$\underset{A}{\square} \quad \vec{C}$
5. Classify the following angles:


6. Angle Addition Postulate:
$\qquad$
$m \angle 1=7 x-2$
$m \angle 2=5 x+5$
$m \angle A B C=75^{\circ}$
What is $x$ equal to?
$x=$ $\qquad$ SIDE NOTE: $\mathrm{m} \angle 1$ is the shortcut way of writing "the measure of angle 1 ." It's like math texting - you write LOL instead of "laughing out loud," math people write $\mathrm{m} \angle 1$ instead of "the measure of angle 1. ."

7. Definition of an Angle Bisector: $\qquad$
$\overrightarrow{B D}$ bisects $\angle A B C$
$m \angle 1=5 x-12$
$m \angle 2=2 x+21$
What is $x$ and $m \angle A B C$ ?
$x=$
$m \angle A B C=$
8. Congruent ( $\cong$ ) means "the same size and shape." Equal ( = ) refers to numerical values. Fill in the following blanks with $\cong$ or $=$. Use the diagrams at the right to assist you.
a. $4+6$ $\qquad$ 10
b. Triangle ZYX $\qquad$ Triangle WVU
Note: this is typically written
$\triangle$ ZYX $\qquad$ $\Delta \mathrm{WVU}$

c. $4 \mathrm{x}+8$ $\qquad$ 4(x+2)
d. AB $\qquad$ CD
e. $\overline{A B}$ $\qquad$ $\overline{C D}$

9. Given what you know about right angles and straight angles, solve for the variables:

10. The angles around parallel lines have some really interesting properties...can you figure them out? Find the values of $a, b, c$, and $d$.
Side Note: The little arrows on the two lines are a Geometry notation for saying "these lines are parallel."
11. Solve for the missing variables.


If $U$ is between $T$ and $B$, find the value of $x$ and the lengths of the segments. (Hint: Draw a picture for each problem with the given information and then write the equation to solve.)
12. $\mathrm{TU}=2 \mathrm{x}, \mathrm{UB}=3 \mathrm{x}+1, \mathrm{~TB}=21$
$x=$
$T U=$ $\qquad$
$U B=$ $\qquad$
13. $T U=4 x-1, U B=2 x-1, T B=5 x$
$x=$ $\qquad$
$T U=$ $\qquad$
UB = $\qquad$
TB = $\qquad$

For 14-15, suppose $\overline{R S}$ is congruent to $\overline{M N}$. For each set, solve for x , and find the length of each segment.
14. $\mathrm{RS}=3 \mathrm{x}+17, \mathrm{MN}=7 \mathrm{x}-15$

$$
\begin{aligned}
& x= \\
& \mathrm{RS}= \\
& \mathrm{MN}=
\end{aligned}
$$

For 16-17, let $\overline{A B} \cong \overline{B C}$.
16. $\quad-\frac{2 x-8}{-} \quad-$

$$
3 x-31
$$

17. 


18. $\mathrm{m} \angle \mathrm{SOX}=160$

$$
m \angle 1=x+1
$$

$$
m \angle 2=3 x-1
$$

Find $m \angle 2$
19. $m \angle B E A=71$. Find $m \angle R E A$.


$$
\begin{array}{ll}
x= & A B= \\
B C= & A C=
\end{array}
$$

$$
\begin{array}{ll}
x= & A B= \\
B C= & A C=
\end{array}
$$


20. $m \angle W O V=12 x$. Find $m \angle L O V$.


Graph the image using the transformation given and give the algebraic rule as requested.

1) reflection across the $x$-axis

Algebraic Rule:
2) reflection across $y=1$

3) reflection across the $x$-axis $T(2,2), C(2,5), Z(5,4), F(5,0)$


Algebraic
Rule:
2) reflection across $y=3$

4) reflection across the $x$-axis

6) reflection across $y=-2$
$H(-1,-5), M(-1,-4), B(1,-2), C(3,-3)$


Find the coordinates of the vertices of each figure after the given transformation and give the algebraic rule, as requested. (Hint: Using graph paper may help on these!)
7) Reflection across the $x$-axis
$K(1,-1), N(4,0), Q(4,-4)$
Algebraic
Rule:
9) Reflection across $x=3$
$F(2,2), W(2,5), K(3,2)$
8) Reflection across $y=-1$
$R(-3,-5), N(-4,0), V(-2,-1), E(0,-4)$
10) Reflection across $x=-1$
$V(-3,-1), Z(-3,2), G(-1,3), M(1,1)$

Write a description of each transformation and give the algebraic rule, as requested.
11)

12)

Algebraic Rule:
13)

14)


Graph the image of the figure using the transformation given. Also, give the coordinates of the image and the algebraic rule for the transformation.

1) rotation $180^{\circ}$ about the origin

2) rotation $90^{\circ}$ clockwise about the origin

3) rotation $90^{\circ}$ clockwise about the origin $U(1,-2), W(0,2), K(3,2), G(3,-3)$


## Algebraic

 Rule:2) rotation $90^{\circ}$ counterclockwise about the
origin


Algebraic Rule:
4) rotation $180^{\circ}$ about the origin


Algebraic Rule:
6) rotation $180^{\circ}$ about the origin $V(2,0), S(1,3), G(5,0)$


Algebraic Rule:

Identify the coordinates of the vertices for each figure after the given transformation. Also, give the algebraic rule for each transformation. Use proper notation.
7) rotation $180^{\circ}$ about the origin
$Z(-1,-5), K(-1,0), C(1,1), N(3,-2)$
Vertices:

Algebraic Rule:
9) rotation $90^{\circ}$ clockwise about the origin $S(1,-4), W(1,0), J(3,-4)$
Vertices:
8) rotation $180^{\circ}$ about the origin $L(1,3), Z(5,5), F(4,2)$
Vertices:

Algebraic Rule:
10) rotation $180^{\circ}$ about the origin $V(-5,-3), A(-3,1), G(0,-3)$
Vertices:

Algebraic Rule:

Write a description of each transformation AND give the algebraic rule.
11)


Description:

Algebraic Rule:
14)


Description:

Algebraic Rule:

Description:

Algebraic Rule:

1. Describe the transformation given by rule $(x, y) \rightarrow(3 x, y)$. Is it an "Isometry"? Why or why not?
2. Write an algebraic rule that would cause dilation by a factor of 3 and dilation by a factor of $1 / 2$.

| 3. Find the scale factor of the dilation that maps $A B C D$ to $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. | 4. Find the scale factor of the dilation that maps $A B C$ to $A^{\prime} B^{\prime} C^{\prime}$. |
| :---: | :---: |
| 5. Graph the dilation of the object shown using a scale factor of 2. |  |
|  |  |
|  |  |
| Algebraic Rule: |  |
|  |  |
|  | - |
|  |  |
|  |  |
|  |  |
| 6. Graph the dilation of the object shown using a scale factor of $1 / 2$. |  |
|  |  |
|  |  |
|  |  |
| Algebraic Rule: |  |
|  |  |
|  |  |
|  |  |
|  |  |

## Advanced:

7. The package for a model airplane states the scale is $1: 63$. The length of the model is 7.6 cm . What is the length of the actual airplane?
8. Another model airplane states the scale is 1:96. The length of the real airplane is 48 feet. What is the length of the model?

## Algebra Review: Systems of Equations

Read the following example problem about solving by the Substitution Method.

Steps explained here:

Example 1:
Solution:

1) $5 x-6(5-2 x)=21$
2) $5 x-30+12 x=21$
3) $17 x-30=21$
4) $x=3$
5) $y=5-2(3)=-1$
$y=5-2 x$
$5 x-6 y=21$
6) Substitute 5-2x for $y$ in the $2^{\text {nd }}$ equation.
7) Distribute.
8) Simplify.
9) Solve by isolating $x$.
10) Substitute 3 for $x$ in the first equation.

The solution is $x=3, y=-1$ or $(3,-1)$
Solve each system of equations by the Substitution Method.
Show ALL work! Use separate paper if needed.

1. $y=3 x$
$5 x+y=24$
2. $\begin{array}{r}y=2 x+5 \\ 3 x-y=4\end{array}$
3. $x=8+3 y$
$2 x-5 y=8$
4. $3 x+2 y=71$
$y=4+2 x$
5. $4 x-5 y=92$
$x=7 y$
6. $y=3 x+8$
$x=y$
7. $8 x+3 y=26$
8. $x-7 y=13$
$2 x=y-4$
$3 x-5 y=23$
9. $3 x+y=19$
$2 x-5 y=-10$

Read the following example problem about solving by the Elimination Method.

Example 2:

$$
\begin{gathered}
3 x-y=13 \\
8 x+2 y=44
\end{gathered}
$$

Solution:

1) $\begin{aligned} & 6 x-2 y=26 \\ & 8 x+2 y=44\end{aligned}$
2) $14 x=70$
3) $x=5$
4) $3(5)-y=13$

Steps explained here:

1) Multiply the $1^{\text {st }}$ equation by 2 to get the same number and opposite signs on 1 variable.
2) Add the two equations together.
3) Solve for $x$.
4) Substitute 5 for $x$ in the first equation.

The solution is $x=5, y=2$ or $(5,2)$
Solve each system by Elimination. Show ALL work! Use separate paper if needed.
10. $5 x-y=20$

$$
3 x+y=12
$$

11. $x+3 y=7$
$x+2 y=4$
12. $3 x-2 y=11$
$3 x-y=7$
13. $\begin{aligned} & 7 x+y=29 \\ & 5 x+y=21\end{aligned}$
14. $\begin{aligned} 8 x-y & =17 \\ 6 x+y & =11\end{aligned}$
15. $9 x-2 y=50$
$6 x-2 y=32$
16. $7 y=2 x+35$
$3 y=2 x+15$
17. $2 y=3 x-1$
$2 y=x+21$
18. $19=5 x+2 y$ $1=3 x-4 y$
19. $u+v=7$
$2 u+v=11$
20. $m-n=-9$
$7 m+2 n=9$
21. $\begin{aligned} 3 p-5 q & =6 \\ 2 p-4 q & =4\end{aligned}$
22. $\begin{aligned} 4 x-5 y & =17 \\ 3 x+4 y & =5\end{aligned}$
23. $2 c+6 d=14$
$\frac{1}{2} c-3 d=8$
24. $3 s+2 t=-3$
$s+1 / 3 t=-4$

Solve each system of equations by using either Substitution or Elimination.
25. $r+4 s=-8$
$3 r+2 s=6$
26. $10 m-9 n=15$
$5 m-4 n=10$
27. $3 c-7 d=-3$
$2 c+6 d=-34$
28. $\begin{aligned} 6 g-8 h & =50 \\ 4 g+6 h & =22\end{aligned}$
29. $2 p=7+q$
$6 p-3 q=24$
30. $3 x=-31+2 y$
$5 x+6 y=23$
31. $3 u+5 v=6$
$2 u-4 v=-7$
32. $3 a-2 b=-3$
$3 a+b=3$
33. $s+3 t=27$
$\frac{1}{2} s+2 t=19$

## Algebra Review: Ratios and Proportions

Simplify each ratio
Ex $1 / 4$ to 6
$=\frac{4}{6}$
$=\frac{2 \cdot 2}{2 \cdot 3}$
$=\frac{2}{3}$

$$
\begin{array}{rlrl}
E \times 2 / 3 a b: 27 a b & E \times 3 /(4 a+4 b):(a+b) \\
& =\frac{3 a b}{27 a b} & & =\frac{4 a+4 b}{a+b} \\
& =\frac{3 a b}{9 \cdot 3 a b} & & =\frac{4(a+b)}{a+b} \\
& =\frac{1}{9} & & =\frac{4}{1}=4
\end{array}
$$

Simplify each ratio

1) 25 to 15
2) $6: 9$
3) 0.8 to 2.4
4) $\frac{36}{54}$
5) $\frac{7}{14 x}$
6) $\frac{12 c}{14 c}$
7) $22 x^{2}$ to $35 x$
8) $0.5 a b: 8 a b$
9) $\frac{1}{4} r^{2}$ to $6 r$
10) $\left(x^{2}+x\right)$ to $2 x$
11) $(2 x-6):(6 x-4)$
12) $(9 x-9 y)$ to $(x-y)$

Express each ratio in simplest form
13) shorter leg: longer leg
15) shorter leg: hypotenuse
16) hypotenuse: longer leg

STEPS

1) Write ratio as a fraction
2) Find and factor out common factors
3) Reduce

$$
+1
$$

) $(9 x-9 y)$ to $(x-y)$

Solve each proportion
$E \times 1: \frac{x}{3}=\frac{2}{5}$

$$
\begin{gathered}
\frac{x}{3}=\frac{2}{5} \\
5 x=6 \\
\frac{5 x}{5}=\frac{6}{5} \\
x=\frac{6}{5}
\end{gathered}
$$

STEPS to solve proportions

1) Cross Multiply
2) Simplify
3) Solve for the variable
$E x 2: \frac{x+4}{x-4}=\frac{6}{5}$

$5(x+4)=6(x-4)$
$5 x+20=6 x-24$
$x=44$

Solve each proportion
19) $\frac{x}{4}=\frac{3}{5}$
20) $\frac{4}{x}=\frac{2}{5}$
21) $\frac{3 x}{7}=\frac{2}{5}$
22) $\frac{8}{x}=\frac{2}{5}$
23) $\frac{x+5}{4}=\frac{1}{2}$
24) $\frac{x+3}{2}=\frac{4}{3}$
25) $\frac{x+2}{x+3}=\frac{4}{5}$
26) $\frac{2 x+1}{4 x-1}=\frac{2}{3}$
27) $\frac{x+3}{2}=\frac{2 x-1}{3}$

Angle Relationships
Parallel Lines and Transversals.


人 $1 \approx<8 \approx<5 \cong<4$
(all are congruent) (FACTS Call are congruent )
$m \angle 1+m<z=180$ lecture theyform measure of $<1$ a lane 6 Ho

F-This is a transversal La line intersecting two other lines at trio distinct points.

DRECTIONS Find all variables for each problem
(1)

$x=$
$y=$
$z=$
$W=$
(9)

$x=$
$y=$
$z=$ $\mathrm{N}=$
(3)


$$
y=
$$

$$
\frac{3}{2}=
$$


$x=$
$y=$
$z=$
$\mathrm{W}=$

DIRECTIONS SOlve for allvariables
(3)



