Honors Math 2 – Things to Remember for Midterm

<u>Transformations</u>	<u>Similarity</u>	Solve Quadratic Equations	
eflections	Two figures are similar if they have all	$=ax^2+bx+c=0$	
$r_{x-axis}(x,y) \to (x,-y)$	corresponding angles congruent AND if	*Must be set equal to 0 at first*	
$r_{y-axis}(x,y) \to (-x,-y)$	all corresponding sides are		
$r_{y=x}(x,y) \to (y,x)$	proportional (must have the same scale	Set each factor equal to zero & solve	
$r_{y=-x}(x,y) \to (-y,-x)$	factor for all sides)	$x^2 - 5x + 6 = 0$ so $(x - 3)(x + 2)$	
otations (counterclockwise)	Ways to Prove Triangles Similar	so x = 3 & -2	D
$R_{90 \ degrees}(x, y) \rightarrow (-y, x)$	AA~ SSS~ SAS~		b
(Same as 270 clockwise)		Factoring:	
$R_{180 \ degrees} (x, y) \to (-x, -y)$	**Set full sides equal to full sides, not parts of sides**	Look to see if there a GCF (greatest]
$R_{270 \ degrees}(x, y) \rightarrow (y, -x)$	parts of sides and	common factor) first!	
(Same as 90 clockwise)	<u>Congruence</u>	ab + ac = a(b + c)	,
anslations	Two figures are congruent if all	Factor 4 terms (Grouping):	b
$(x, y) \rightarrow (x \pm \#, y \pm \#)$	corresponding angles and sides are	Check for GCF of all terms first.	
ilations	congruent.	Factor out GCF of the first two terms.	
$D_k(x,y) \to (kx,ky)$	-	Factor out GCF of the last two terms.	b
	Ways to Prove Triangles Congruent	Combine like terms - Bring the	
Rotational Symmetry: A rotation	SSS SAS ASA AAS HL	coefficients (GCFs) together as a	
which the figure is its own image. To	* NEVER ASS OR SSA*	binomial and place the shared	
ind the rotational degrees where a	**Corresponding parts of congruent	binomial at the back.	
lygon will rotate onto its own image,	triangles are always congruent**		A
take 360/(# of sides)	➔ Find missing angles, sides, and	Factor 3 terms:	
Adding or Subtracting Polynomials	variables by setting	Find two numbers that multiply to give	V
Combine like terms	corresponding parts of	a*c but add to give b value	a
$(3x^2 - 4 + 2x) + (5x - 6x^2 + 7)$	congruent triangles equal	Use those two numbers to "bust the b"	a
$= -3x^2 + 7x + 3$	— • • •	term and factor by grouping	+
$(3x^2 - 4 + 2x) - (5x - 6x^2 + 7)$	Triangles		-2
$=9x^2 - 3x - 11$	Scalene – no congruent sides	<u>Factor 4 terms (Grouping)</u> : Check for GCF first. Place all 4 terms	D
	Isosceles – at least 2 congruent sides	into a box and factor.	R
Multiplying Polynomials	Base angles of isosceles triangles are congruent		
Multiply: (distribute or foil or box)	Equilateral – 3 congruent sides	Difference of Squares:	
$(4x+3)(x+2) = 4x^2 + 11x + 6$	Equilateral – 5 congruent sides	$(a^2 - b^2) = (a - b)(a + b)$	
or	Acute – all angles <90 degrees	(u b) = (u b)(u + b)	
$(2x+3)(x^2-3x+9)$	Right – one 90 degree angle	Square roots:	
$= 2x^3 - 6x^2 + 18x$	Obtuse – one obtuse angle (>90)	Isolate the variable and take the square	
$+ 3x^2 - 9x + 27$	Equiangular – 3 congruent angles	root of each side.	
$= 2x^3 - 3x^2 + 9x + 27$	Equilateral↔Equiangular	if $x^2 = m$, then $x = \pm \sqrt{m}$	
	-quinter and - EquilanBului		1
	<u>Mid-segments of triangles</u> are half the		
	length of their parallel side.		а

 $ax^2 + bx + c = 0$ *Must set equal to 0 BEFORE solving* $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{c}$ Discriminant: tells info about roots $p^2 - 4ac > 0$ Two real roots Perfect Square: Rational roots Non perfect square: Irrational roots Graph has two x-intercepts $p^2 - 4ac = 0$ One real roots This root will be repeated 2 times Graph has one x-intercept $p^2 - 4ac < 0$ Zero real roots Two imaginary/complex roots Graph will have zero x-intercepts **Graphing Parabolas** Axis of symmetry: $\frac{-b}{2a}$ Vertex: $\left(\frac{-b}{2a}, f\left(\frac{-b}{2a}\right)\right)$ *Substitute the xis of symmetry into the function* a: parabola has a min. & opens up a: parabola has a max. & opens down Domain for parabolas: all real numbers Range: Look at the y-value of vertex. y is \geq or \leq this number **Function Transformations** f(-x) is refl. over y-axis like $y = (-x)^2$ -f(x) is refl. over x-axis like $y = -x^2$ f(x) + k is translated up k f(x) - k is translated down k f(x - h) is translated right h f(x + h) is translated left h af(x) is vertical stretch if a > 1af(x) is vertical compression if 0 < a < 1

Quadratic Formula

