Honors Math 2 – Things to Remember for Exam

Transformations	Similarity	Solve Quadratic Equations	Quadratic Formula
Reflections	Two figures are similar if they have all	$=ax^2+bx+c=0$	$ax^2 + bx + c = 0$
$r_{x-axis}(x,y) \rightarrow (x,-y)$	corresponding angles congruent AND if	*Must be set equal to 0 at first*	*Must set equal to 0 BEFORE solving*
$r_{y-axis}(x,y) \to (-x,y)$	all corresponding sides are		$-b \pm \sqrt{b^2 - 4ac}$
$r_{y=x}(x,y) \to (y,x)$	proportional (must have the same scale	Set each factor equal to zero & solve	$x = \frac{2a}{2a}$
$r_{y=-x}(x,y) \to (-y,-x)$	factor for all sides)	$x^2 - 5x + 6 = 0$ so $(x - 3)(x + 2)$	
Rotations (counterclockwise)	Ways to Prove Triangles Similar	so x = 3 & -2	Discriminant: tells info about roots
$R_{90 \ degrees} (x, y) \to (-y, x)$	AA~ SSS~ SAS~	Eastoring	$b^2 - 4ac > 0$ Two real roots
(Same as 270 clockwise)	**Set full sides equal to full sides not	Look to see if there a GCF (greatest	Perfect Square: Rational roots
$R_{180 \ degrees} (x, y) \rightarrow (-x, -y)$	narts of sides**	common factor) first!	Non perfect square: Irrational roots
$R_{270 \ degrees} (x, y) \to (y, -x)$		ab + ac = a(b + c)	Graph has two x-intercepts
(Same as 90 clockwise)	Congruence		$h^2 - 4ac = 0$ One real roots
Translations	Two figures are congruent if all	Factor 4 terms (Grouping):	This root will be repeated 2 times
$(x, y) \rightarrow (x \pm \#, y \pm \#)$	corresponding angles and sides are	Check for GCF of all terms first.	Graph has one x-intercept
Dilations $D(x,y) \rightarrow (kx,ky)$	congruent.	Factor out GCF of the first two terms.	h^2 Are < 0. Zero real reate
$D_k(x,y) \rightarrow (kx,ky)$	Ways to Prove Triangles Congruent	Factor out GCF of the last two terms.	D = 4uc < 0 Zero real roots
Rotational Symmetry: A rotation	SSS SAS ASA AAS HL	Combine like terms - Bring the	Granh will have zero x-intercents
which the figure is its own image. To	* NEVER ASS OR SSA*	coefficients (GLFs) together as a	draph win have zero x intercepts
find the rotational degrees where a	**Corresponding parts of congruent	binomial at the back	Graphing Parabolas
polygon will rotate onto its own image,	triangles are always congruent**	binomial at the back.	Axis of symmetry: $\frac{-b}{-b}$
take 360/(# of sides)	➔ Find missing angles, sides, and	Factor 3 terms:	Axis of symmetry. 2a
	variables by setting	Find two numbers that multiply to give	Vertex: $\left(\frac{-b}{-b}, f\left(\frac{-b}{-b}\right)\right)$ *Substitute the
Adding or Subtracting Polynomials	corresponding parts of	a*c but add to give b value	$(2a^{\prime\prime})(2a)$
$(2x^2 + 2x) + (5x + 6x^2 + 7)$	congruent triangles equal	Use those two numbers to "bust the b"	axis of symmetry into the function*
(3x - 4 + 2x) + (3x - 6x + 7) - $-3x^2 + 7x + 3$		term and factor by grouping	+a: parabola has a min. & opens up
$(3x^2 - 4 + 2x) - (5x - 6x^2 + 7)$	Triangles		-a: parabola has a max. & opens down
$=9x^2 - 3x - 11$	Scalene – no congruent sides	<u>Factor 4 terms (Grouping)</u> :	Domain for parabolas: all real numbers
	Isosceles – at least 2 congruent sides	Lheck for GCF first. Place all 4 terms	Range: Look at the y-value of vertex
Multiplying Polynomials	base aligies of isosceles trialigies		v is $>$ or $<$ this number
Multiply: (distribute or foil or box)	Equilateral – 3 congruent sides	Difference of Squares:	, , , , , , , , , , , , , , , , , , ,
$(4x+3)(x+2) = 4x^2 + 11x + 6$		$(a^2 - b^2) = (a - b)(a + b)$	Function Transformations
or	Acute – all angles <90 degrees		$f(-x)$ is refl. over y-axis like $y = (-x)^2$
$(2x+3)(x^2-3x+9)$	Right – one 90 degree angle	<u>Square roots</u> :	$-f(x)$ is refl. over x-axis like $y = -x^2$
$= 2X^3 - 6X^2 + 18X$	Obtuse – one obtuse angle (>90)	Isolate the variable and take the square	f(x) + k is translated up k
$- 2v^3 - 3v^2 + 9v + 27$	Equiangular – 3 congruent angles	root of each side.	f(x) - k is translated down k
= 2x - 5x + 5x + 27	Equilateral↔Equiangular	if $x^2 = m$, then $x = \pm \sqrt{m}$	f(x - h) is translated right h
			I(x + II) is utilisiated tetri II af(x) is vertical stratch if $a > 1$
	<u>Mid-segments of triangles</u> are half the		af(x) is vertical compression if $0 < a < 1$
	length of their parallel side.		

<u>Probability</u>	Advanced Functions	Trigonometry
Sets: Know union and intersections & how to create Venn diagrams from info	Domain: set of all x-values Range: set of all y-values	*Calculator in degree mode unless otherwise stated* Trig Graphs y = acin(hx) + c or $y = acoc(hx) + c$
Intersection of two sets $(A \cap B)$: Elements in both sets (the "overlap" of the two) Union of two sets $(A \cup B)$: Everything in either set (in A or B alone or both) Probability = $\frac{Desired \ outcomes}{Total \ possible \ outcomes}$	Direct Variation $y = kx$ "y varies directly with x" Solve: $\frac{y}{x} = \frac{y}{x}$ Inverse Variation $y = \frac{k}{x}$ "y varies inversely with x" Solve: $xy = xy$	$y = asin(bx) + c on y = acos(bx) + c$ Amplitude: $ a $ Midline: $y = c$ Period $= \frac{360}{b}$ Find midline from a graph: $y = \frac{max+min}{2}$ Or $y = min + amp$
Odds = Desired outcome : Undesired outcome P(A and B) = P(A) * P(B) $P(A \cap B) = P(A) \cdot P(B)$ \rightarrow Watch for independent vs dependent	Direct/Inverse Variation (combined) $y = \frac{z}{z}$ "y varies directly with x and inversely with z" Joint Variation (Combined Variation) $z = kxy$ "z varies jointly with x and y"	Tangent graphs have asymptotes where undefined. Pythagorean Thm: find final side of right triangle $a^2 + b^2 = c^2$
P(A or B) = P(A) + P(B) - P(A and B) P(A ∪ B) = P(A) + P(B) - P(A ∩ B) → Watch for "overlap" & subtract it	Solving Rational Equations: Get rid of the denominators by multiplying all terms by a common denominator.	$sin(\theta) = \frac{Opp}{Hyp}$ $cos(\theta) = \frac{Adj}{Hyp}$ $tan(\theta) = \frac{Opp}{Adj}$ Use regular trig for find missing sides
Complement: $A^{c} = 1 - P(A)$ Conditional Probability $P(B A) = \frac{P(A \text{ and } B)}{P(A)}$	$\frac{22}{2x^2 - 9x - 5} - \frac{3}{2x + 1} = \frac{2}{x - 5}$ $\frac{22 - 3(x - 5)}{22 - 3x + 15} = 2(2x + 1)$ $\frac{22 - 3x + 15}{2x - 3x + 15} = 4x + 2$	Angle of Elevation: From horizontal line of sight – up Angle of Depression: horizontal line of sight – down
Permutations: without repetition and order matters. ${}_{n}P_{r} = \frac{n!}{(n-r)!}$	37 - 3x = 4x + 2 35 = 7x so $x = 5*x=5 doesn't work so NO SOLUTION*Excluded Values: Values that make the rationalexpression undefined. Set the denominators$	Area of Oblique Triangle (for SAS = 2 sides & 1 included angle) $Area = \frac{1}{2}absin(C)$ Law of Sines: for ASA or AAS Triangles
Factorial (!) $5! = 5*4*3*2*1$	equal to zero and solve to find E.V.'s	$\frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c}$ Law of Cosines: for SSS or SAS Triangles $c^{2} = a^{2} + b^{2} - 2abcos(C)$