\qquad

1. Transformations

2. Solve the proportions

3. Triangle Angle Sum Theorem -
a. The sum of the 3 angles of a triangle equals \qquad .
b. Solve for x.

$x=$ \qquad
c. Solve for x.

$\mathrm{x}=$
d. Solve for x .

$x=$ \qquad
4. Similar triangles
a. If 2 triangles are similar then the corresponding angles are \qquad
b. If 2 triangles are similar then the corresponding sides are \qquad

d. $\triangle A B C \sim \triangle D E F$

$x=$ \qquad $y=$ \qquad
e. $\triangle A B C \sim \triangle D E F$

$\mathrm{x}=$ \qquad $y=$ \qquad
5. Congruent triangles SAS, SSS, ASA (CPCTC - matching from a congruence statement)
a. Two triangles are congruent if they have exactly the same \qquad and exactly the same \qquad .
b. The three postulates that can be used to prove 2 triangles must be congruent are \qquad ,
c. AAA (is / is not) a valid postulate to guarantee that two triangles are congruent.
d. SSA (is / is not) a valid postulate to guarantee that two triangles are congruent.

Match the diagrams to the postulates they illustrate
(e.SSS
6. Solve for x .

a. $3 x+4=25$	b. $(7 x-3)+(8 x-2)=130$	c. $10 x-13=7 x+2$

7. Midpoint
a. A midpoint bisects a segment into \qquad
b. Celeste is standing at the corner of $-2^{\text {nd }}$ street and $-4^{\text {th }}$ avenue $(-2,-4)$. She starts walking towards her friend Ernesto's house. When she reaches the corner of $3^{\text {rd }}$ street and $6^{\text {th }}$ avenue $(3,6)$ she has walked exactly half the distance. Where is Ernesto's house?
c. What are the coordinates of the midpoint between $A(-4,5)$ and $B(2,8)$?
8. Triangle Midsegment
a. A midsegment connects the \qquad of two sides of a triangle.
b. The length of the Midsegment is \qquad the length of the $3^{\text {rd }}$ side of the triangle.
c. In the diagram below $\mathrm{x}=$ \qquad $y=$ \qquad , and $\mathrm{z}=$ \qquad .

d. In the diagram below, D, E, and F are all midpoints of triangle ABC . Determine the lengths.

9. Equilateral Triangles $x=$ \qquad $y=$	10. Segment Addition $A B=5 x-3 \quad B C=10 x+4$ $x=$	$\mathrm{AC}=94$ $\stackrel{\rightharpoonup}{\mathrm{C}}$
11. Isosceles Triangles $x=$ \qquad $y=$	12. Angle Addition $m \angle 1=7 x-2$ $m \angle 2=5 x+5$ $m \angle A B C=75^{\circ}$ $x=$ \qquad	

13. Match the shape with the cross-section

Answer: \qquad

Answer: —__

Answer: \qquad
14.

Answer: \qquad
5.

Answer:
Answer bank:
A. Rectangle
B. Semicircle
C. Trapezoid
D. Circle
E. Triangle

Answers:
10
4a. congruent (or equal)
4b. proportional
c. $x=42, y=4$
d. $x=90, y=12$
e. $x=65, y=1$ -
$\begin{array}{llll}\text { 2a. } x=4 & \text { b. } x=6 & \text { c. } x=7\end{array}$
3a. 180 b. $x=61$ c. $x=15$ d. $x=$

5a. size, shape 6b. SSS, SAS, ASA
5 c . is not 5 d . is not
5e. 2 5f. 3 5g. 1
6a. $x=7 \quad$ b. $x=9 \quad$ c. $x=5$
7a. 2 equal parts b. $(8,16)$ c. (-
1,6.5)

8a. midpoints, b. half
8c. $x=5, y=6, z=14$
8 d . $A B=30, B C=20, A C=16, A D=15$
$F D=10, D E=8, F E=15, C E=10$
$\begin{array}{ll}\text { 9. } x=60 \quad y=60 & \text { 10. } x=6.2\end{array}$
11. $x=40, y=70$ 12. $x=6$
13. 1C, 2D, 3E, 4A, 5B

