Direct, Inverse, and Compound Variation

Direct Variation

Direct variation equations are written in the form \qquad where \qquad is the
\qquad (which is also called the constant of proportion).

This equation can also be expressed as \qquad .

This form helps us realize that in a direct variation relationship the quotient of y divided by x will always be the constant of variation.

Examples of Formulas that Involve Direct Variation Relationships

- $\quad C=\pi d$; Where \qquad is directly proportional to \qquad with a constant of variation equal to \qquad .
- $A=\pi r^{2}$; Where \qquad is directly proportional to \qquad , with a constant of variation equal to \qquad .

Example Problem

James is running at a constant pace. After 4 minutes he has run 700 meters. If he keeps this constant pace, how far will he have run in 9 minutes? Find the constant of variation and write an equation that relates the time that he runs, t , with the distance that he runs, d .

Inverse Variation

Inverse variation equations are written in the form \qquad where \qquad is the
\qquad .

This equation can also be expressed as \qquad .

This form helps us realize that in an inverse variation relationship, the product of x and y will always be the constant of variation.

Inverse variation relationships are a type of rational function. The graph of an inverse variation equation is a curve that has two \qquad . An \qquad is a line that the graph never touches. The graph of $y=\frac{1}{x}$ has a horizontal asymptote at $\mathrm{y}=0$ and a vertical asymptote at $\mathrm{x}=0$. When x is greater than 0 and is increasing, the graph will curve down and approach $\mathrm{y}=0$. When x is less than 0 and is decreasing the graph will again approach $\mathrm{y}=0$.

Direct, Inverse, and Compound Variation

Sketch the graph of $y=\frac{1}{x}$:

Example Formulas that Involve Inverse Variation Relationships

- $t=\frac{500}{r}$, Where \qquad is \qquad proportional to
\qquad with a constant of variation equal to \qquad .
- $\quad I=\frac{1}{d^{2}}$, Where the intensity of light radiating from a sources varies \qquad as the square of the distance from the source.

Example Problem

Two different rectangles have the same area. One of the rectangles is 5 cm wide and 12 cm long. The other rectangle is 6 cm wide. What is the length of the other rectangle? Write an equation that relates the length, l, of a rectangle with this area to the width, w, and identify the constant of variation for this relationship.

Compound Variation: Both Inverse and Direct Variation Relationships

- $\quad D=\frac{M}{V}$; Where \qquad is \qquad proportional to
\qquad and \qquad proportional to \qquad .
- $\quad I=\frac{V}{R} ;$ Where \qquad is \qquad proportional to
\qquad and \qquad proportional to \qquad .

Identify which relationships involve direct variation, inverse variation, both, or neither.

1. The formula for the volume of a sphere
2. The equation $R=\frac{V}{I}$
3. The equation $x y=10$

Write an equation to model each relationship.
4. The variable a varies inversely with the variable b with a constant of proportionality equal to 7 .
5. The variable r varies directly to the square root of s with a constant of proportionality equal to 5 .
6. The variable q varies directly to the square of w and inversely to k.

